template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
class spline::SplineOptimizer< Time, Numeric, Dim, Safe, Point >
Mosek connection to produce optimized splines.
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
template<typename In >
Starts an optimization loop to create curve.
- Parameters
-
waypoints | : a list comprising at least 2 waypoints in ascending time order |
- Returns
- An Optimised curve
template<typename Time = double, typename Numeric = Time, Eigen::Index Dim = 3, bool Safe = false, typename Point = Eigen::Matrix<Numeric, Dim, 1>>
template<typename In >
exact_cubic<Time, Numeric, Dim, Safe, Point>* spline::SplineOptimizer< Time, Numeric, Dim, Safe, Point >::GenerateOptimizedCurve |
( |
In |
wayPointsBegin, |
|
|
In |
wayPointsEnd |
|
) |
| const |
|
inline |
A looks something like that : (n = size) [H2(0) 0 0 -H1(0) 0——————-0] [ 0 0 H2(0) 0 0 -H1(0)—————0] [ 0 0 0 H2(0) 0 0 H1(0)——–0] ... [ 0 0 0 0 H2(n) 0 0 0 -H1(n)-0] // row n
Overall it's fairly easy to fill
A looks something like that : (n = size) [G1(0) 0 0 G2(0) 0———————–0 -1 0] [ 0 0 G1(0) 0 0 G2(0)——————-0 -1 0] [ 0 0 0 G1(0) 0 0 G2(0)———–0 -1 0] ... [ 0 0 0 0 G1(n) 0 0 0 G2(n)-0 -1 0] // row n
Overall it's fairly easy to fill
A looks something like that : (n = size) [G3(0) 0 0 G4(0) 0——————-0 -1 0] [ 0 0 G3(0) 0 0 G4(0)—————0 -1 0] [ 0 0 0 G3(0) 0 0 G4(0)——–0 -1 0] ... [ 0 0 0 0 G3(n) 0 0 0 G4(n)-0 -1 0] // row n
Overall it's fairly easy to fill
A looks something like that : (n = size) [H3(0) 0 0 H4(0) 0——————-0 -2 0] [ 0 0 H3(0) 0 0 H4(0)—————0 -2 0] [ 0 0 0 H3(0) 0 0 H4(0)——-0 -2 0] ... [ 0 0 0 0 H3(n) 0 0 0 H4(n)-0 -2 0] // row n
Overall it's fairly easy to fill
*No Bounds on variables. */