Represents a Polynomialf arbitrary order defined on the interval [tBegin, tEnd]. It follows the equation x(t) = a + b(t - t_min_) + ... + d(t - t_min_)^N, where N is the order. More...
#include <parametric-curves/polynomial.hpp>
Public Types | |
typedef Point | point_t |
typedef Numeric | time_t |
typedef Numeric | num_t |
typedef std::vector< Point, Eigen::aligned_allocator< Point > > | t_point_t |
typedef AbstractCurve< Numeric, Point > | curve_abc_t |
typedef Eigen::Matrix< double, Dim, Eigen::Dynamic > | coeff_t |
typedef Eigen::Ref< coeff_t > | coeff_t_ref |
![]() | |
typedef Point | point_t |
typedef Numeric | time_t |
typedef Numeric | num_t |
Public Member Functions | |
Polynomial (const coeff_t &coefficients, const time_t tmin, const time_t tmax) | |
Constructor. More... | |
Polynomial (const t_point_t &coefficients, const time_t tmin, const time_t tmax) | |
Constructor. More... | |
Polynomial () | |
template<typename In > | |
Polynomial (In zeroOrderCoefficient, In out, const time_t tmin, const time_t tmax) | |
Constructor. More... | |
~Polynomial () | |
Destructor. More... | |
Polynomial (const Polynomial &other) | |
virtual const point_t | operator() (const time_t &t) const |
Evaluation of the cubic spline at time t using horner's scheme. More... | |
virtual const point_t | derivate (const time_t &t, const std::size_t &order) const |
Evaluation of the derivative spline at time t. More... | |
virtual const std::size_t & | size () const |
virtual bool | setInitialPoint (const point_t &) |
virtual bool | setInitialPoint (const num_t &) |
![]() | |
AbstractCurve (time_t t_min_, time_t t_max_) | |
AbstractCurve () | |
virtual | ~AbstractCurve () |
virtual const time_t | tmin () const |
virtual const time_t | tmax () const |
virtual bool | checkRange (const time_t t) const |
virtual bool | setTimePeriod (const time_t &traj_time_) |
Protected Attributes | |
coeff_t | coefficients_ |
std::size_t | dim_ |
std::size_t | order_ |
![]() | |
time_t | t_min |
time_t | t_max |
Friends | |
class | boost::serialization::access |
Represents a Polynomialf arbitrary order defined on the interval [tBegin, tEnd]. It follows the equation x(t) = a + b(t - t_min_) + ... + d(t - t_min_)^N, where N is the order.
typedef Eigen::Matrix<double, Dim, Eigen::Dynamic> parametriccurves::Polynomial< Numeric, Dim, Point >::coeff_t |
typedef Eigen::Ref<coeff_t> parametriccurves::Polynomial< Numeric, Dim, Point >::coeff_t_ref |
typedef AbstractCurve<Numeric, Point> parametriccurves::Polynomial< Numeric, Dim, Point >::curve_abc_t |
typedef Numeric parametriccurves::Polynomial< Numeric, Dim, Point >::num_t |
typedef Point parametriccurves::Polynomial< Numeric, Dim, Point >::point_t |
typedef std::vector<Point, Eigen::aligned_allocator<Point> > parametriccurves::Polynomial< Numeric, Dim, Point >::t_point_t |
typedef Numeric parametriccurves::Polynomial< Numeric, Dim, Point >::time_t |
|
inline |
Constructor.
coefficients | : a reference to an Eigen matrix where each column is a coefficient, from the zero order coefficient, up to the highest order. Spline order is given by the number of the columns -1. |
min | LOWER bound on interval definition of the spline |
max | UPPER bound on interval definition of the spline |
|
inline |
Constructor.
coefficients | : a container containing all coefficients of the spline, starting with the zero order coefficient, up to the highest order. Spline order is given by the size of the coefficients |
min | LOWER bound on interval definition of the spline |
max | UPPER bound on interval definition of the spline |
|
inline |
|
inline |
Constructor.
zeroOrderCoefficient | : an iterator pointing to the first element of a structure containing the coefficients it corresponds to the zero degree coefficient |
out | : an iterator pointing to the last element of a structure ofcoefficients |
min | LOWER bound on interval definition of the spline |
max | UPPER bound on interval definition of the spline |
|
inline |
Destructor.
|
inline |
|
inlinevirtual |
Evaluation of the derivative spline at time t.
t | : the time when to evaluate the spline |
order | : order of the derivative |
return | : the value x(t) |
Implements parametriccurves::AbstractCurve< Numeric, Point >.
|
inlinevirtual |
Evaluation of the cubic spline at time t using horner's scheme.
t | : the time when to evaluate the spine |
return | : the value x(t) |
Implements parametriccurves::AbstractCurve< Numeric, Point >.
|
inlinevirtual |
|
inlinevirtual |
|
inlinevirtual |
|
friend |
|
protected |
|
protected |
|
protected |