Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12]
 Cparametriccurves::AbstractCurve< Numeric, Point >Represents a curve of dimension Dim is Safe is false, no verification is made on the evaluation of the curve
 Cparametriccurves::Constant< Numeric, Dim, Point >
 Cparametriccurves::InfiniteConstAcc< Numeric, Dim, Point >Creates InfiniteConstAcc curve s = s_0 + u_0*t+0.5*a_0*t^2
 Cparametriccurves::InfiniteSinusoid< Numeric, Dim, Point >Creates InfiniteSinusoid curve The sinusoid is actually a cosine so that it starts with zero velocity. Returns x = x_init + A*cos(2*pi*f*t) where f is give by 1/(2*traj_time)
 Cparametriccurves::LinearChirp< Numeric, Dim, Point >Creates LinearChirp curve Linear chirp trajectory generator. A linear chirp is a sinusoid whose frequency is a linear function of time. In particular the frequency starts from a value f0 and it increases linearly up to a value f1. Then it goes back to f0 and the trajectory is ended
 Cparametriccurves::MinimumJerk< Numeric, Dim, Point >Creates MinimumJerk curve
 Cparametriccurves::Polynomial< Numeric, Dim, Point >Represents a Polynomialf arbitrary order defined on the interval [tBegin, tEnd]. It follows the equation x(t) = a + b(t - t_min_) + ... + d(t - t_min_)^N, where N is the order
 Cparametriccurves::Spline< Numeric, Dim, Point, SplineBase >Represents a set of cubic splines defining a continuous function crossing each of the waypoint given in its initialization
 Cparametriccurves::TextFile< Numeric, Dim, Point >Loads curve from file
 Cparametriccurves::AbstractCurve< Numeric, Eigen::Matrix< Numeric, 6, 1 > >
 Cparametriccurves::spatial::ForceCurve< Numeric >Representation of a spatial vector curve in the form of splines Returns Plucker coordinates in the form of (Linear(3), Angular(3))
 Cparametriccurves::AbstractCurve< Numeric, Eigen::Matrix< Numeric, Dim, 1 > >
 Cparametriccurves::Spline< Numeric, Dim, Eigen::Matrix< Numeric, Dim, 1 > >
 Cspline::Bern< Numeric >
 CBernsteinComputes a Bernstein polynome
 CBezierCurveRepresents a Bezier curve of arbitrary dimension and order. For degree lesser than 4, the evaluation is analitycal.Otherwise the bernstein polynoms are used to evaluate the spline at a given location
 Ccurve_abc
 Cspline::bezier_curve< Time, Numeric, Dim, Safe, Point >
 Ccurve_abc_quat_t
 Cspline::helpers::rotation_spline
 Cparametriccurves::curve_constraints< Point >
 Cspline::helpers::effector_spline_rotationRepresents a trajectory for and end effector uses the method effector_spline to create a spline trajectory. Additionally, handles the rotation of the effector as follows: does not rotate during the take off and landing phase, then uses a SLERP algorithm to interpolate the rotation in the quaternion space
 Cserialization::Serializable< Derived >
 Cspline::SplineOptimizer< Time, Numeric, Dim, Safe, Point >Mosek connection to produce optimized splines