|
| | LinearChirp (const time_t &traj_time_, const point_t &x_init_=Eigen::Matrix< Numeric, Dim, 1 >::Zero(), const point_t &x_final_=Eigen::Matrix< Numeric, Dim, 1 >::Zero()) |
| | Constructor.
|
| |
| | LinearChirp (const time_t &traj_time_, const freq_t &f0_, const freq_t &f1_, const point_t &x_init_=Eigen::Matrix< Numeric, Dim, 1 >::Zero(), const point_t &x_final_=Eigen::Matrix< Numeric, Dim, 1 >::Zero()) |
| |
| | ~LinearChirp () |
| | Destructor.
|
| |
| virtual const point_t | operator() (const time_t &t) const |
| | Evaluation of the cubic spline at time t.
|
| |
| virtual const point_t | derivate (const time_t &t, const std::size_t &order) const |
| | Evaluation of the derivative spline at time t.
|
| |
| virtual bool | setInitialFrequency (const Eigen::VectorXd &f0_) |
| |
| virtual bool | setInitialFrequency (const double &f0_) |
| |
| virtual bool | setFinalFrequency (const Eigen::VectorXd &f1_) |
| |
| virtual bool | setFinalFrequency (const double &f1_) |
| |
| virtual bool | setInitialPoint (const point_t &x_init_) |
| |
| virtual bool | setInitialPoint (const double &x_init_) |
| |
| virtual bool | setFinalPoint (const Eigen::VectorXd &x_final_) |
| |
| virtual bool | setFinalPoint (const double &x_final_) |
| |
| | AbstractCurve (time_t t_min_, time_t t_max_) |
| |
| | AbstractCurve () |
| |
| virtual | ~AbstractCurve () |
| |
| virtual const time_t | tmin () const |
| |
| virtual const time_t | tmax () const |
| |
| virtual bool | checkRange (const time_t t) const |
| |
| virtual bool | setInitialPoint (const num_t &)=0 |
| |
| virtual bool | setTimePeriod (const time_t &traj_time_) |
| |
template<
typename Numeric = double, Eigen::Index Dim = 1,
typename Point = Eigen::Matrix<Numeric, Dim, 1>>
class parametriccurves::LinearChirp< Numeric, Dim, Point >
Creates LinearChirp curve Linear chirp trajectory generator. A linear chirp is a sinusoid whose frequency is a linear function of time. In particular the frequency starts from a value f0 and it increases linearly up to a value f1. Then it goes back to f0 and the trajectory is ended.