
A guide to robotpkg

Anthony Mallet — anthony.mallet@laas.fr

April 30, 2025

ii

Copyright ©2006-2011,2013 LAAS/CNRS.
Copyright ©1997-2010 The NetBSD Foundation, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

1 Introduction 1
1.1 What is robotpkg? . 1
1.2 Why robotpkg? . 2
1.3 Supported platforms . 3
1.4 Overview . 4
1.5 Terminology . 4
1.6 Roles involved in robotpkg . 5
1.7 Typography . 5

2 The robotpkg user’s guide 7
2.1 Where to get robotpkg and how to keep it up-to-date 7

2.1.1 Getting the binary bootstrap kit 8
2.1.2 Getting robotpkg for source compilation 8
2.1.3 Keeping robotpkg up-to-date 9

2.2 Bootstrapping robotpkg . 9
2.2.1 Bootstrapping via the binary kit 9
2.2.2 Bootstrapping from source 9

2.3 Using robotpkg . 11
2.3.1 Building packages from source 11
2.3.2 Building packages from a repository checkout 13
2.3.3 Installing binary packages 14
2.3.4 Removing packages . 15
2.3.5 Getting information about installed packages 15
2.3.6 Other administrative functions 15
2.3.7 Available make targets 15

2.4 Configuring robotpkg . 17
2.4.1 Selecting build options 17
2.4.2 Selecting build alternatives 18
2.4.3 Defining collections of packages 19
2.4.4 Package specific configuration variables 20
2.4.5 General configuration variables 20
2.4.6 Variables affecting the build process 21
2.4.7 Additional flags to the compiler 22

iv

2.5 Creating binary packages for everything 22
2.5.1 Initial setup . 22
2.5.2 Running bulk builds 23
2.5.3 Generating pretty reports 24
2.5.4 Automated bulk builds 24

3 The robotpkg developer’s guide 25
3.1 Package files, directories and contents 25

3.1.1 Makefile . 25
3.1.2 distinfo . 28
3.1.3 PLIST . 28
3.1.4 patches/* . 29

3.2 General operation . 29
3.2.1 Adding build options to a package 29
3.2.2 Customizing the PLIST 31
3.2.3 Customizing the semi-automatic PLIST generation . . 33
3.2.4 Incrementing versions when fixing an existing package 33
3.2.5 Substituting variable text in the package files 34

3.3 The build phase . 34

1

Introduction

1.1 What is robotpkg?

The robotics research community has always been developing a lot of soft-
ware, in order to illustrate theoretical concepts and validate algorithms on
board real robots. A great amount of this software was made freely avail-
able to the community, especially for Unix-based systems, and is usually
available in form of the source code. Therefore, before such software can be
used, it needs to be configured to the local system, compiled and installed.
This is exactly what The Robotics Packages Collection (robotpkg) does.
robotpkg also has some basic commands to handle binary packages, so that
not every user has to build the packages for himself, which is a time-costly,
cumbersome and error-prone task.

The robotpkg project was initiated in the Laboratory for Analysis and
Architecture of Systems (CNRS/LAAS), France. The motivation was, on
the one hand, to ease the software maintenance tasks for the robots that
are used there. On the other hand, roboticists at CNRS/LAAS have always
fostered an open-source development model for the software they were devel-
oping. In order to help people working with the laboratory to get the LAAS
software running outside the laboratory, a package management system was
necessary.

Although robotpkg was an innovative project in the robotics community
(it started in 2006), a lot of general-purpose software packages management
systems were readily available at this time for a great variety of Unix-based
systems. The main requirements that we wanted robotpkg to fullfill were
listed and the best existing package management system was chosen as a
starting point. The biggest requirement was the capacity of the system to
adapt to the nature of the robotic software, being available mostly in form

http://www.laas.fr/
http://www.laas.fr/

2 CHAPTER 1. INTRODUCTION

of source code only (no binary packages), with unfrequent stable releases.
robotpkg had thus to deal mostly with source code and automate the com-
pilation of the packages. The system chosen as a starting point was The
NetBSD Packages Collection (pkgsrc). robotpkg can be considered as a fork
of this project and it is still very similar to pkgsrc in many points, although
some simplifications were made in order to provide a tool geared toward
people that are not computer scientists but roboticists.

Due to its origins, robotpkg provides many packages developed at LAAS.
It is however not limited to such packages and contains, in fact, quite some
other software useful to roboticists. Of course, robotpkg is not meant to be
a general purpose packaging system (although there would be no technical
restriction to this) and will never contain widely available packages that can
be found on any modern Unix distribution. Yet, robotpkg currently contains
roughly one hundred and fifty packages, including:

• architecture/genom - The LAAS Generator of Robotic Components

• architecture/openrtm - The robotic distributed middleware from AIST,
Japan

• middleware/yarp - The “other”, yet famous, robot platform

• ...just to name a few.

1.2 Why robotpkg?
robotpkg provides the following key features:

• Easy building of software from source as well as the creation and instal-
lation of binary packages. The source and latest patches are retrieved
from a master download site, checksum verified, then built on your
system.

• All packages are installed in a consistent directory tree, including bi-
naries, libraries, man pages and other documentation.

• Package dependencies, including when performing package updates,
are handled automatically.

• The installation prefix, acceptable software licenses and build-time
options for a large number of packages are all set in a simple, central
configuration file.

• The entire framework source (not including the package distribution
files themselves) is freely available under a BSD license, so you may
extend and adapt robotpkg to your needs, like robotpkg was adapted
from pkgsrc.

http://www.pkgsrc.org
http://www.pkgsrc.org

1.3. SUPPORTED PLATFORMS 3

One question often asked by people is “why was robotpkg forked from
pkgsrc instead of integrating the packages into pkgsrc?”. This is indeed a
very good question and the following paragraphs try to answer it.

First, robotpkg is not meant to be a replacement for the system’s pack-
age management tool (it does not superseeds pkgsrc, dpkg, macports etc.).
The goal is to package software that is not widely available on a platform,
and which is mostly "lab software" (generally of lesser quality than widely
available software). Those packages change (a lot) more often, and more
drastically. Thus, robotpkg is a little bit closer to a "development" tool
than pkgsrc. Other “system packages” are correctly handled by a number
of packaging tools, and there is no need for a new tool.

Currently, pkgsrc mixes both infrastructure and packages descriptions
themselves. For someone working on e.g. Linux, checking-out the whole
pkgsrc tree would be cumbersome: it would be redundant with the base
Linux package system, plus it would be difficult to isolate the specific robotic
packages from the rest (the rest usually being available in the base system).
robotpkg currently suffers from the same symptom: this may change in the
future if the need for several package repositories becomes blatant.

robotpkg provides a number of features not available in pkgsrc (and
probably not really useful to pkgsrc either). The most important feature
is to be able to detect “system packages”, that are considered as "external
software not in robotpkg but usually available on a unix system". pkgsrc
has a similar system but much more limited – to a few base packages only.
This is so because pkgsrc is a full-fledged package system. Thus, it aims at
being self contained, while robotpkg does not.

Finally, there are a number of additions/changes to the pkgsrc infrastruc-
ture that correspond to legitimate users requests and the specifc workflow
in which robotpkg is used. For instance, robotpkg provides the possibility
to generate an archive of a package from a specific tag in a source repos-
itory “on the fly” or just bypass the archive generation and work directly
from the source repository to install the software. This later workflow is not
encouraged, but it is convenient to quickly test a -current version of some
software to see if it causes any problem. Those features could be ported
back to pkgsrc if the pkgsrc team would find them useful. In the meantime,
robotpkg provides a good testbed for them.

Still, robotpkg directly uses many of the pkgsrc tools unchanged and the
binary packages are fully compatible.

1.3 Supported platforms

robotpkg consists of a source distribution. After retrieving the required
source, you can be up and running with robotpkg in just minutes!

robotpkg does not have much requirements by itself and it can work on

4 CHAPTER 1. INTRODUCTION

a wide variety of systems as long as they provide a GNU-make utility, a
working C-compiler and a small, reasonably standard subset of Unix com-
mands (like sed, awk, find, grep ...). However, individual packages might
have their specific requirements. The following platforms have been reported
to be supported reasonably well:

Platform Version
Fedora 25 or above
Ubuntu 12.04 or above
Debian 7 or above
NetBSD 6 or above
Darwin Partial support - infrastructure works, individual packages may not

Any other Unix-like platform should usually work.

1.4 Overview

This document is divided into three parts. The first one, The robotpkg
user’s guide, describes how one can use one of the packages in the Robotics
Package Collection, either by installing a precompiled binary package, or
by building one’s own copy using robotpkg. The second part, The robotpkg
developer’s guide, explains how to prepare a package so it can be easily built
by other users without knowing about the package’s building details. The
third part, ??, is intended for those who want to understand how robotpkg
is implemented.

1.5 Terminology

Here is a description of all the terminology used within this document.

Package A set of files and building instructions that describe what’s nec-
essary to build a certain piece of software using robotpkg. Packages
are traditionally stored under /opt/robotpkg.

robotpkg This is the The Robotics Package Collection. It handles building
(compiling), installing, and removing of packages.

Distfile This term describes the file or files that are provided by the author
of the piece of software to distribute his work. All the changes neces-
sary to build are reflected in the corresponding package. Usually the
distfile is in the form of a compressed tar-archive, but other types are
possible, too. Distfiles are usually stored below /opt/robotpkg/distfiles.

1.6. ROLES INVOLVED IN ROBOTPKG 5

Precompiled/binary package A set of binaries built with robotpkg from
a distfile and stuffed together in a single .tgz file so it can be installed
on machines of the same machine architecture without the need to re-
compile. Packages are usually generated in /opt/robotpkg/packages.
Sometimes, this is referred to by the term “package” too, especially in
the context of precompiled packages.

Program The piece of software to be installed which will be constructed
from all the files in the distfile by the actions defined in the corre-
sponding package.

1.6 Roles involved in robotpkg
robotpkg users The robotpkg users are people who use the packages pro-

vided by robotpkg. Typically they are student working in robotics.
The usage of the software that is inside the packages is not covered by
the robotpkg guide.
There are two kinds of robotpkg users: Some only want to install
pre-built binary packages. Others build the robotpkg packages from
source, either for installing them directly or for building binary pack-
ages themselves. For robotpkg users, Part 2, The robotpkg user’s
guide, should provide all necessary documentation.

package maintainers A package maintainer creates packages as described
in Part 3, The robotpkg developer’s guide.

infrastructure developers These people are involved in all those files that
live in the mk/ directory and below. Only these people should need to
read through Part ??, ??, though others might be curious, too.

1.7 Typography
When giving examples for commands, shell prompts are used to show if the
command should/can be issued as root, or if “normal” user privileges are
sufficient. We use a # for root’s shell prompt, and a % for users’ shell prompt,
assuming they use the C-shell or tcsh.

2

The robotpkg
user’s guide

Basically, there are two ways of using robotpkg. The first is to only install
the package tools and to use binary packages that someone else has prepared.
The second way is to install the programs from source. Then you are able
to build your own packages, and you can still use binary packages from
someone else. Sections in this document will detail both approaches where
appropriate.

2.1 Where to get robotpkg and how to keep it up-
to-date

Before you download and extract the files, you need to decide where you
want to extract them and where you want robotpkg to install packages. By
defaut, the /opt/openrobots directory is used. In the rest of this document,
the installation path is called the prefix.

robotpkg will never require administration privileges by itself. We thus
recommend that you do not install or run robotpkg as the root user. If
something ever goes really wrong, it might go less wrong if it is not running
as root. If you want to install to the default location /opt/openrobots, we
recommend that you create this directory owned by a regular user.

Creating or using /opt/openrobots typically requires administration
(a.k.a. “root”) privileges. If you don’t have such privileges (or if you
want to install to a different location), you have to unpack the sources and
install the binary packages in another prefix. If you don’t have any special
administration rights on the target machine, a safe bet is to choose the
$HOME/openrobots location, as the $HOME directory will always be writable

8 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

by yourself.
Any prefix will work, but please note that you should choose an instal-

lation path which is dedicated to robotpkg packages and not shared with
other programs (e.g., we do not recommend to use a prefix of /usr). Also,
you should not try to add any of your own files or directories (such as src/)
below the prefix tree. This will prevent possible conflicts between programs
and other files installed by the package system and whatever else may have
been installed there.

Finally, the installation path shall not contain white-space or other char-
acters that are interpreted specially by the shell and some other programs:
use only letters, digits, underscores and dashes.

The rest of this document will assume that you are using /opt/openrobots
as the prefix. You should adapt this path to whatever prefix you choosed.

2.1.1 Getting the binary bootstrap kit

At the moment, the binary bootstrap kit is not available. Please get the
robotpkg sources as described in the next section.

2.1.2 Getting robotpkg for source compilation

robotpkg sources are distributed via the git software content management
system. git will probably be readily available on your system but if you
don’t have it installed or if you are unsure about it, contact your local system
administrator.

There are two download methods: the anonymous one and the authen-
ticated one:

• Anonymous download is the recommended method if you don’t in-
tend to work on the robotpkg infrastructure itself, nor commit any
changes or packages additions back to the robotpkg main repository.
Furthermore, the possibility to send contributions via patches is still
open.
As your regular user, simply run in a shell:

% cd /opt/openrobots
% git clone git://git.openrobots.org/robots/robotpkg
% # or
% git clone https://git.openrobots.org/robots/robotpkg.git

• Authenticated download requires a valid login on the main robotpkg
repository, and will give you full commit access to this repository.
Simply run the following:

http://git-scm.com/

2.2. BOOTSTRAPPING ROBOTPKG 9

% cd /opt/openrobots
% git clone ssh://git@git.openrobots.org/robots/robotpkg

2.1.3 Keeping robotpkg up-to-date

robotpkg is a living thing: updates to the packages are made perdiodicaly,
problems are fixed, enhancements are developed. . . If you downloaded the
robotpkg sources via git, you should keep it up-to-date so that you get the
most recent packages descriptions. This is done by running git pull in the
robotpkg source directory:

% cd /opt/openrobots/robotpkg
% git pull

When you update robotpkg, the git program will only touch those files
that are registered in the git repository. That means that any packages that
you created on your own will stay unmodified. If you change files that are
managed by git, later updates will try to merge your changes with those
that have been done by others. See the git-pull manual for details.

If you want to be informed of package additions and other updates, a
public mailing list is available for your reading pleasure. Go to https:
//sympa.laas.fr/sympa/info/robotpkg for more information and sub-
scription.

2.2 Bootstrapping robotpkg

Once you have downloaded the robotpkg sources or the binary bootstrap kit
as described in Section 2.1, Where to get robotpkg and how to keep it up-
to-date, a minimal set of the administrative package management utilities
must be installed on your system before you can use robotpkg. This is called
the “bootstrap phase” and should be done only once, the very first time you
download robotpkg.

2.2.1 Bootstrapping via the binary kit

At the moment, the binary bootstrap kit is not available. Please bootstrap
robotpkg as described in the next section.

2.2.2 Bootstrapping from source

You will need a working C compiler and the GNU-make utility version
3.81 or later. If you have extracted the robotpkg archive into the stan-
dard /opt/openrobots/robotpkg location, installing the bootstrap kit from
source should then be as simple as:

https://sympa.laas.fr/sympa/info/robotpkg
https://sympa.laas.fr/sympa/info/robotpkg

10 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

% cd /opt/openrobots/robotpkg/bootstrap
% ./bootstrap

This will install various utilities into /opt/openrobots/sbin.
Should you prefer another installation path, you could use the --prefix

option to change the default installation prefix. For instance, configuring
robotpkg to install programs into the openrobots directory in your home
directory can be done like this:

% cd robotpkg/bootstrap
% ./bootstrap --prefix=${HOME}/openrobots

After the bootstrap script has run, a message indicating the
success should be displayed. If you choosed a non-standard in-
stallation path, read this message carefuly, as it contains instructions
that you have to follow in order to setup your shell environment correctly.
These instructions are described in the next section.

Configuring your environment

If you configured robotpkg, during the bootstrap phase, to install to some
other location than /opt/openrobots, you have to setup manually your shell
environment so that it contains a few variables holding the installation path.
Assuming you invoked bootstrap with –prefix=/path/to/openrobots, you
have two options that are compatible with each other:

• Add the directory /path/to/openrobots/sbin to your PATH variable.
robotpkg will then be able to find its administrative tools automati-
cally and from that recover other configuration information. This is
the preferred method.

• Create the environment variable ROBOTPKG_BASE and set its value to
/path/to/openrobots. robotpkg will look for this variable first, so it
takes precedence over the first method. This is the method you have
to choose if you have configured several instances of robotpkg in your
system. This is ony useful in some circumstances and is not normally
needed.

If you don’t know how to setup environment variables permanently in
your system, please refer to your shell’s manual or contact your local system
administrator.

The bootstrap script usage

The bootstrap script will by default install the package administrative tools
in /opt/openrobots/sbin, use gcc as the C compiler and make as the GNU-
make program. This behaviour can be fine-tuned by using the following
options:

2.3. USING ROBOTPKG 11

--prefix <path> will select the prefix location where programs will be in-
stalled in.

--sysconfdir <path> defaults to <prefix>/etc. This is the path to the
robotpkg configuration file. Other packages configuration files (if any)
will also be stored in this directory.

--pkgdbdir <path> defaults to <prefix>/var/db/pkg. This is the path
to the package database directory where robotpkg will do its internal
bookkeeping.

--compiler <program> defaults to gcc. Use this option if you want to use
a different C compiler.

--make <program> defaults to make. Use this option if you want to use
a different make program. This program should be compatible with
GNU-make.

--help displays the bootstrap usage. The comprehensive list of recognized
options will be displayed.

2.3 Using robotpkg

After obtaining robotpkg , the robotpkg directory now contains a set of
packages, organized into categories. You can browse the online index of
packages, or run make index from the robotpkg directory to build local
index.html files for all packages, viewable with any web browser such as
lynx or firefox.

robotpkg is essentially based on the make(1) program. All actions are
triggered by invoking make with the proper target. The following sections
document the most useful ones and section 2.3.7, Available make targets,
recaps a more comprehensive list.

2.3.1 Building packages from source

The first step for building a package is downloading the distfiles (i.e. the un-
modified source). If they have not yet been downloaded, robotpkg will fetch
them automatically and place them in the robotpkg/distfiles directory.

Once the software has been downloaded, any patches will be applied and
the package will be compiled for you. This may take some time depending
on your computer, and how many other packages the software depends on
and their compile time.

For example, type the following commands at the shell prompt to build
the robotpkg documentation package:

12 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

% cd /opt/openrobots/robotpkg
% cd doc/robotpkg
% make

The next stage is to actually install the newly compiled package onto
your system. While you are still in the directory for whatever package you
are installing, you can do this by entering:

% make install

Installing the package on your system does not require you to be root (ex-
cept for a few specific packages). However, if you bootstraped with a prefix
for which you don’t have writing permissions, robotpkg has a just-in-time-
sudo feature, which allows you to become root for the actual installation
step.

That’s it, the software should now be installed under the prefix of the
packages tree — /opt/openrobots by default — and setup for use.

You can now enter:

% make clean

to remove the compiled files in the work directory, as you shouldn’t
need them any more. If other packages were also added to your system
(dependencies) to allow your program to compile, you can also tidy these
up with the command:

% make clean-depends

Since the three tasks of building, installing and cleaning correspond to
the typical usage of robotpkg , a helper target doing all these tasks exists
and is called update. Thus, to intall a package with a single command, you
can simply run:

% make update

In addition, make update will also recompile all the installed packages
that were depending on the package that you are updating. This can be quite
time consuming if you are updating a low-level package. Also, note that all
packages that depend on the package you are updating will be deinstalled
first and unavailable in your system until all packages are recompiled and
reinstalled.

Occasionally, people want to “look under the covers” to see what is going
on when a package is building or being installed. This may be for debugging
purposes, or out of simple curiosity. A number of utility values have been
added to help with this.

2.3. USING ROBOTPKG 13

1. If you invoke the make command with PKG_DEBUG_LEVEL=1, then a
huge amount of information will be displayed. For example,

% make patch PKG_DEBUG_LEVEL=1

will show all the commands that are invoked, up to and including the
“patch” stage. Using PKG_DEBUG_LEVEL=2 will give you even more
details.

2. If you want to know the value of a certain make definition, then the
VARNAME variable should be used, in conjunction with the show-var
target. e.g. to show the expansion of the make variable LOCALBASE:

% make show-var VARNAME=LOCALBASE

2.3.2 Building packages from a repository checkout

Before building a package, robotpkg fetches the sources from the official(s)
download location(s), as instructed by the MASTER_SITES variable. This is
the standard and expected behaviour when you work with stable packages.

Occasionally, though, it is useful to fetch a snapshot of the sources from
a development repository. For instance, one might want to quickly test
a release candidate of a package, or fix a simple bug and create a patch
from the fix. Whenever a package defines the MASTER_REPOSITORY variable,
robotpkg is able to temporarily work with the repository defined in this
variable. At the moment, cvs, svn and git repositories are supported.

To enable this feature for a given package, you have to first instruct
robotpkg to work from a ’checkout’ (instead of the stable releases) by
doing ’make checkout’ in the package directory. For instance:

% cd robotpkg/foo/bar
% make checkout

This sets a permanent flag in the working directory of the package
and the checkout configuration option will be retained until the next ’make
clean’. After a ’make clean’, the configuration option is set back to its de-
fault and robotpkg will work again with stable releases. This option is set
on a per package basis only: configuring one package to work with checkouts
does not affect the behaviour of other packages.

After a ’make checkout’ (and until a ’make clean’), the package has a
regular checkout in its working subdirectory. You can thus manually edit,
commit, switch branches, etc. in the package sources, like in any other
repository, by first cding into the working directory, then using the usual
repository commands (cvs, svn or git).

14 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

Of course, the individual robotpkg targets are still available from the
package entry in the robotpkg hierarchy. You can for instance ’make patch’,
’configure’, ’build’, ’install’ or ’update’ as usual. Note that robotpkg
is not exactly stateless, and this is most visible when working with check-
outs: for instance, after a successful ’make build’, you have to do ’make
rebuild’ to force rebuilding if you have modified the sources. The same
holds for ’configure’ (do ’reconfigure’) or ’install’ (do ’reinstall’, but
since you cannot install a package twice, you normally have to use ’make
replace’ in the particular case of reinstalling a package).

The ’clean’ target is special, in that it removes the checkout configu-
ration option and all checkouted sources, including locally modified sources.
In order to prevent accidental deletion of precious files, you have to confirm
the cleanign with ’clean confirm’, as in:

% make clean confirm

A final remark: we STRONGLY DISCOURAGE the use of robotpkg as
a development tool (i.e. using the ’checkout’ feature on a regular basis),
for at least two reasons:

• robotpkg is not designed for this: it will not really help you in your
daily development work, compared to the manual configuration instal-
lation of the software. It will sometimes create even more trouble, by
ensuring that all the software depending on the checkouted software is
up-to-date, which is not necessarily something you want to do every
time you compile.

• A checkout breaks the notion of ’release’ and you loose all the benefits
from working with packages. In particular, you have no clear state of
what is installed: you cannot easily reproduce the situation of time
T at time T+n and don’t know precisely who requires which version
of what. It is much more efficient and robust to release frequently a
software in a development phase, than using a rolling release approach.

In our opinion, the ’checkout’ target use should be limited to testing
a release candidate or quickly fix a bug and create a patch from the fix,
that you commit upstream and put in the patches/ directory until the next
release.

2.3.3 Installing binary packages

At the moment, installing binary packages is not documented.

2.3. USING ROBOTPKG 15

2.3.4 Removing packages

To deinstall a package, it does not matter whether it was installed from
source code or from a binary package. The robotpkg_delete command does
not know it anyway. To delete a package, you can just run robotpkg_delete
<package-name>. The package name can be given with or without version
number. Wildcards can also be used to deinstall a set of packages, for
example *genom* all packages whose name contain the word genom. Be sure
to include them in quotes, so that the shell does not expand them before
robotpkg_delete sees them.

The -r option is very powerful: it removes all the packages that require
the package in question and then removes the package itself. For example:

% robotpkg_delete -r genom

will remove genom and all the packages that used it; this allows upgrad-
ing the genom package.

2.3.5 Getting information about installed packages

The robotpkg_info shows information about installed packages or binary
package files.

2.3.6 Other administrative functions

The robotpkg_admin executes various administrative functions on the pack-
age system.

2.3.7 Available make targets

The following targets are available in a package directory. They can be in-
voked by running make <target> after cding into some robotpkg/category/package.

Source manipulation

fetch Download the ${DISTFILES}.

extract Extract the contents of ${DISTFILES} into the work directory
${WRKDIR}.

patch Apply local patches available in ${PATCHDIR} (usually the patches
directory in the package).

checkout Extract the sources in ${WRKDIR} from ${MASTER_REPOSITORY}
instead of ${MASTER_SITES}. This can be used to fetch a not yet
released version instead of the latest release. This is mutually exclu-
sive with the fetch and extract targets. See section 2.3.2, Building
packages from a repository checkout, for details.

16 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

configure Perform the necessary actions to configure the sources. This
may for instance involve running configure or cmake. If no configu-
ration is required, this step simply does nothing.

build Or just make, the default target. It compiles the package locally in
${WRKDIR}.

install Install the package into ${PREFIX}. The package is then avail-
able to the rest of the system. If an older version of the package is
installed and required by other packages, this target requires confirma-
tion. Otherwise, any older version of the package is first deinstalled.

replace Same as install, but does not remove packages that depend on
the replaced package. This saves some time, since already installed
package are not touched, but if the replaced package is incompatible
with the older version, you will run into trouble. Use with care and
when you know what you are doing.

clean Tidy the work directory and removes ${WRKDIR}. If the package was
extracted using checkout, this target requires confirmation as it may
delete locally modified files that will be lost.

update This is a shortcut target for fetch, extract, configure, build,
install and clean. If the package is already installed and up-to-
date, the target asks for confirmation.

Introspection

show-options Display the list of available alternatives (see section 2.4.2,
Selecting build alternatives) and build options (see section 2.4.1, Se-
lecting build options).

show-depends Recursively display all the required dependencies of a pack-
age. The results are splitted between system and robotpkg dependen-
cies, and missing dependencies are indicated.

show-var Display the contents of a variable. This must be invoked as make
show-var VARNAME=foo, where foo is the name of the variable to be
displayed.

Package sets

fetch-depends, replace-depends, update-depends, clean-depends This
runs the same action as fetch, replace, update or clean (respec-
tively), but on all dependencies of the package, including the package
itself. Useful to update a meta-packages, for instance.

2.4. CONFIGURING ROBOTPKG 17

fetch-<set>, replace-<set>, update-<set>, clean-<set> This runs the
same action as fetch, replace, update or clean (respectively), but
on all members of the package set named <set>. See section 2.4.3,
Defining collections of packages, for an explanation of package sets
and how to configure them.

2.4 Configuring robotpkg
The whole robotpkg system is configured via a single, centralized file, called
robotpkg.conf and placed in the /opt/openrobots/etc directory by de-
fault. This location might be redefined during the bootstrap phase, see
Section 2.2, Bootstrapping robotpkg. During the bootstrap, an initial con-
figuration file is created with the settings you provided to bootstrap.

The format of the configuration file is that of the usual GNU style
Makefiles. The whole robotpkg configuration is done by setting variables
in this file. Note that you can define all kinds of variables, and no special
error checking (for example for spelling mistakes) takes place, so you have
to try it out to see if it works.

2.4.1 Selecting build options

Some packages have build time options, usually to select between differ-
ent dependencies, enable optional support for big dependencies or enable
experimental features.

To see which options, if any, a package supports, and which options are
mutually exclusive, run make show-options. For example:

Any of the following general options may be selected:
api Generate module API only
debug Produce debugging information for binary programs

* openprs Generate OpenPRS client code
* python Enable Python client code
*d tcl Generate TCL client code
* tclserv_client Generate C tclServ client code

xenomai Enable Xenomai support

This indicates that the package supports a number of options (api,
debug, openprs ...). The currently enabled options are indicated by a star
(*) and the default options are shown by the small letter d in front of each
option (here, only the tcl is enabled by default).

The following variables can be defined in robotpkg.conf to select which
options to enable for a package:

PKG_DEFAULT_OPTIONS can be used to select or disable options for all pack-
ages that support them,

18 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

PKG_OPTIONS.<pkgbase> can be used to select or disable options specifically
for package <pkgbase>. Options listed in these variables are selected,
options prefixed by - are disabled (e.g. -tcl would disable the tcl
option).

A few examples:

PKG_DEFAULT_OPTIONS= debug
PKG_OPTIONS.genom= doc -tcl

It is important to note that options that were specifically suggested by
the package maintainer must be explicitely removed if you do not wish to
include the option. If you are unsure you can view the current state with
make show-options.

The following settings are consulted in the order given, and the last
setting that selects or disables an option is used:

1. the default options as suggested by the package maintainer,

2. PKG_DEFAULT_OPTIONS,

3. PKG_OPTIONS.<pkgbase>

For groups of mutually exclusive options, the last option selected is used,
all others are automatically disabled. If an option of the group is explicitly
disabled, the previously selected option, if any, is used. It is an error if no
option from a required group of options is selected, and building the package
will fail.

2.4.2 Selecting build alternatives

Some packages have alternative dependencies, usually to select between
equivalent components or versions of components. This is similar to op-
tions but the configuration is done globally for all packages that use the
same alternatives (this is to ensure consistency between packages).

To see which alternatives, if any, a package uses, run make show-options.
For example:

Available c-compiler alternatives (PREFER_ALTERNATIVE.c-compiler):
*1 gcc Use the GNU C compiler
2 clang Use the LLVM C compiler
ccache-gcc Use ccache and the GNU C compiler
ccache-clang Use ccache and the LLVM C compiler

This indicates that the package supports a c-compiler alternative, for
which gcc, clang, ccache-gcc and ccache-clang can be used. The cur-
rently selected alternative is shown by the star (*), and the user preferences

2.4. CONFIGURING ROBOTPKG 19

(or the default if the user has not set explicit preferences) are indicated by
the integer in front of the alternative item (here gcc is the preferred alter-
native, then clang should be used if gcc is not available. ccache should
not be used).

The following variables can be defined in robotpkg.conf to select which
alternative to use:

PREFER_ALTERNATIVE.<alt> Alternatives are selected by setting the vari-
able corresponding to the alternative (PREFER_ALTERNATIVE.c-compiler
in the example above) to a space separated list, sorted by order of
preference, containing one or several of the items shown by make
show-options.

2.4.3 Defining collections of packages

Instead of installing, removing or updating packages one-by-one, you can
define collections of packages in your robotpkg.conf. Once one or more col-
lections are defined, they enable special targets that work on all the packages
of a collection.

To define a collection, you have to give it a name and list the set of pack-
ages forming the collection in the special PKGSET variable in robotpkg.conf.
The syntax is the following:

PKGSET.<name> = <list>
PKGSET_DESCR.<name> = short, optional description of the collection

where <name> is the name of the collection (any string is valid) and
<list> is the list of packages in the collection, in the form <category>/<name>.
For instance,

PKGSET.myset = architecture/genom middleware/pocolibs
PKGSET_DESCR.myset = an awesome duo

defines a collection named myset that contains the two packages genom
and pocolibs and describes itself with a rather doubtful sentence.

For each collection <name> defined in robotpkg.conf, the following tar-
gets are available: clean-<name>, fetch-<name>, extract-<name>, install-<name>,
replace-<name>, update-<name> and deinstall-<name>. They perform
the same action as their respective counterpart without -<name> suffix, ex-
pect that they work on all packages of the set. In addition, for the replace,
update and deinstall targets, they sort the packages in the order of their
dependencies so that the job is done a sensible order.

For the user convenience, two special targets are provided. The “installed”
collection is always defined and represents all currently installed packages.
Invoking, for instance, the update-installed target will therefore update

20 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

all currently installed packages. The “depends” collection is available only
when the current working directory is inside a package. It merely defines
the current package and all of its dependencies as the sole elements of the
collection. Invoking, for instance, the update-depends target will update
all dependencies of the package in the current directory.

Two robotpkg.conf variables affect the default behaviour of robotpkg
regarding packages sets:

PKGSET_FAILSAFE When working on a set, and this variable is set to
yes, robotpkg will continue with further packages instead of stopping
on an error. If set to ’no’, stop on first error. Default: no.

PKGSET_STRICT Specify if package sets should be considered as ’strict’
or include dependencies of packages defined in the set. If set to ’yes’,
only package strictly defined in sets are considered. If set to ’no’, de-
pendencies of packages listed in sets are added to their respective sets.
Default: no.

Each of these variables can be defined on a per-collection basis, by adding
the .<name> suffix to the variable name, where <name> is the name of the
collection to be configured.

2.4.4 Package specific configuration variables

In this section, you can find variables that apply to one specific package.
Each variable is suffixed by .<pkg>, where <pkg> is the actual package name
to which the variable should apply.

REPOSITORY.<pkg> locally overrides the default MASTER_REPOSITORY
defined for a package. This is useful if you want to work with an al-
ternative, perhaps local, repository when doing a make checkout.

CHECKOUT_VCS_OPTS.<pkg> is a list of options used when fetch-
ing a package via a make checkout command. The options are passed
to the “cvs checkout”, “git clone” or “svn checkout” command that ex-
tract the source archive.

2.4.5 General configuration variables

In this section, you can find some variables that apply to all robotpkg
packages.

ACCEPTABLE_LICENSES List of acceptable licenses. Whenever you
try to build a package whose license is not in this list, you will get an
error message that includes instructions on how to change this variable.

2.4. CONFIGURING ROBOTPKG 21

DISTDIR Where to store the downloaded copies of the original source
distributions used for building robotpkg packages. The default is
$ROBOTPKG_DIR/distfiles.

PACKAGES The top level directory for the binary packages. The default
is $ROBOTPKG_DIR/packages.

MASTER_SITE_BACKUP List of backup locations for distribution
files if not found locally or in $MASTER_SITES. The default is
http://softs.laas.fr/openrobots/robotpkg/distfiles/.

PKG_DEBUG_LEVEL The level of debugging output which is dis-
played whilst making and installing the package. The default value
for this is 0, which will not display the commands as they are exe-
cuted (normal, default, quiet operation); the value 1 will display all
shell commands before their invocation, and the value 2 will display
both the shell commands before their invocation, and their actual ex-
ecution progress with set -x.

2.4.6 Variables affecting the build process

WRKOBJDIR The top level directory where, if defined, the separate
working directories will get created. This is useful for building pack-
ages on a different filesystem than the robotpkg sources.

OBJHOSTNAME If set to yes (the default), use hostname-specific work-
ing directories, e.g. work.cactus, work.localhost. OBJHOSTNAME takes
precedence over OBJMACHINE (see below).

OBJMACHINE If set to yes (the default) use machine-specific working
directories, e.g. work.Linux-i386.

DEPENDS_TARGET By default, dependencies are only installed, and
no binary package is created for them. You can set this variable to
package to automatically create binary packages after installing de-
pendencies.

LOCALBASE Where packages will be installed. The default value is
/opt/openrobots. Do not mix binary packages with different values
of LOCALBASEs!

MAKE_JOBS When defined, specifies the maximum number of jobs that
are run in parallel when building packages with the default action.
MAKE_JOBS only affects the "build" target. MAKE_JOBS can be set to
any positive integer; useful values are around the number of processors
on the machine.

22 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

2.4.7 Additional flags to the compiler

If you wish to set compiler variables such as CFLAGS, CXXFLAGS, FFLAGS ...
please make sure to use the += operator instead of the = operator:

CFLAGS+= -your -flags

Using CFLAGS= (i.e. without the “+”) may lead to problems with packages
that need to add their own flags.

If you want to pass flags to the linker, both in the configure step and the
build step, you can do this in two ways. Either set LDFLAGS or LIBS. The
difference between the two is that LIBS will be appended to the command
line, while LDFLAGS come earlier. LDFLAGS is pre-loaded with rpath settings
for machines that support it. As with CFLAGS you should use the += operator:

LDFLAGS+= -your -linkerflags

2.5 Creating binary packages for everything
There are two ways of getting a set of binary packages: manually building
the packages you need, or using robotpkg “bulk build” infrastructure.

Bulk builds can also be used to test that packages compile and install
cleanly, and robotpkg provides reporting tools that can summarize the re-
sults of a “bulk build”.

2.5.1 Initial setup

The required setup for running bulk build merely consists in properly setting
up robotpkg itself. Details can be found in sections 2.2, Bootstrapping
robotpkg, and 2.4, Configuring robotpkg.

For instance, setup robotpkg in the /local/robotpkg directory:

% mkdir -p /local/var/lib
% cd /local/var/lib
% git clone git://git.openrobots.org/git/robots/robotpkg
% cd robotpkg/bootstrap
% ./bootstrap --prefix=/local/robotpkg

You should install at least pkgtools/pkg_install, pkgtools/digest
and pkgtools/tnftp. Optionally, you can install pkgtools/rbulkit that
can generate pretty HTML reports (section 2.5.3, Generating pretty re-
ports).

% cd /local/var/lib/robotpkg
% cd pkgtools/rbulkit
% make update

2.5. CREATING BINARY PACKAGES FOR EVERYTHING 23

You must configure the prefix directory where binary packages are built.
This is important: since binary package are not relocatable, this directory
will be the installation directory of all generated packages. However, if
you use bulk builds only as a way to test the build of your packages, any
directory can be configured. The following variables can be customized in
robotpkg.conf:

BULKBASE?= /opt/openrobots The installation prefix of binary pack-
ages. This must be different from the ${LOCALBASE} directory where
regular robotpkg packages are installed. The default is /opt/openrobots.

BULK_LOGDIR?= ${LOCALBASE}/var/log/bulk The directory
where log files are kept. The default is to put log files in the regular
installation prefix of robotpkg (/local/robotpkg/var/log/bulk in
the example setup above).

BULK_TAG A name (alphanumeric characters) for that bulk session.
The default name is based on the machine operating system and ver-
sion. Giving a different name can be used to distinguish between dif-
ferent runs, but in this case it is probably easier to pass that variable
definition on the command line.

Finally, you must define at least one package set (see section 2.4.3, Defin-
ing collections of packages) containing the list of packages to build (running
bulk build on a single package is also supported, but has only limited inter-
est). For instance, create a “huge” and a “tiny” set by placing the following
definitions in your robotpkg.conf file:

PKGSET_DESCR.huge= Huge bulk set: everything!
PKGSET.huge= */*:*

PKGSET_DESCR.tiny= Tiny bulk set: just one package + dependencies
PKGSET.tiny= shell/eltclsh
PKGSET_STRICT.tiny= no

2.5.2 Running bulk builds

The target for running bulk builds is called bulk. You can run a bulk
build for one package by just running make bulk in the package directory.
Running make bulk-depends would run the bulk target on the package and
all of its dependencies. More useful though is to use some predefined sets of
packages as explained in the previous section:

% cd /local/var/lib/robotpkg
% make bulk-tiny

24 CHAPTER 2. THE ROBOTPKG USER’S GUIDE

This would run the bulk target on each package of the tiny set (see sec-
tion 2.4.3, Defining collections of packages, for an explanation of the -<set>
targets).

This should run for a while and enventually populate ${BULK_LOGDIR}
with lots of log files. You can then examine them manually, or generate
some reports with rbulkit.

2.5.3 Generating pretty reports

If you installed the pkgtools/rbulkit package, you can use the rbulk-report
program (installed in <prefix>/sbin) to generate:

• an sqlite database containing the bulk results

• an HTML report

With the sample setup used throughout this chapter, the sqlite database
can be populated like so:

% rbulk-report log2db /local/robotpkg/var/log/bulk sqlite.db

Note that the command will append the results to a pre-existing sqlite.db.
Only results using the same BULK_TAG will be overwritten.

The HTML report can then be updated like so:

% rbulk-report db2html sqlite.db /tmp/bulk-report/

The report can then be viewed by pointing a web browser to /tmp/bulk-report/index.html.
To go further, please read the rbulk-report(1) manual for available

commands and options.

2.5.4 Automated bulk builds

The pkgtools/rbulkit package contains sample scripts and programs that
can be used to automate bulk builds. First, there is the rbulk-build
script, that does essentially all the steps described in the previous sections.
See rbulk-build(1) for more information. It relies on a properly setup
robotpkg and robotpkg.conf.

There are also the rbulk-watchd and rbulk-notify programs, than can
respectively wait for and signal notifications over TCP. This can be used to
trigger a bulk build in a commit hook, for instance. See rbulk-watchd(1)
and rbulk-notify(1).

Finally, rbulk-dispatch and rbulk-dispatchd are able to parallelize
jobs on a group of machines according to user defined priorities. See rbulk-
-dispatchd(1).

3

The robotpkg
developer’s

guide

This part of the documentation deals with creating and modifying packages.

3.1 Package files, directories and contents

Whenever you’re preparing a package, there are a number of files involved
which are described in the following sections.

3.1.1 Makefile

Building, installation and creation of a package are all controlled by the
package’s Makefile. The Makefile describes various things about a package,
for example from where to get it, how to configure, build, and install it.

A package Makefile contains several sections that describe the package.
In the first section there are the following variables, which should appear

exactly in the order given here. The order and grouping of the variables is
mostly historical and has no further meaning.

PKGREVISION Defines the robotpkg revision number of the package.
This should not be set for a new package. See Section 3.2.4, Incre-
menting versions when fixing an existing package, for details.

26 CHAPTER 3. THE ROBOTPKG DEVELOPER’S GUIDE

MASTER_SITES In simple cases, MASTER_SITES defines all URLs from
where the distfile, whose name is derived from the DISTNAME variable,
is fetched.
When actually fetching the distfiles, each item from MASTER_SITES
gets the name of each distfile appended to it, without an intermediate
slash. Therefore, all site values have to end with a slash or other
separator character. This allows for example to set MASTER_SITES to
a URL of a CGI script that gets the name of the distfile as a parameter.
In this case, the definition would look like:

MASTER_SITES= http://www.example.com/download.cgi?file=

There are some predefined values for MASTER_SITES, which can be used
in packages. The names of the variables should speak for themselves.

${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_GNU}
${MASTER_SITE_OPENROBOTS}

If you choose one of these predefined sites, you may want to specify
a subdirectory of that site. Since these macros may expand to more
than one actual site, you must use the following construct to specify a
subdirectory:

MASTER_SITES= ${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

FETCH_METHOD This is the method used to download the distfile
from MASTER_SITES. It defaults to ’archive’ which corresponds to the
normal situation where distfile is an archive available from MASTER_SITES,
so it normally needs not to be set.
However, it can happen that a software provider does not provide any
archive available for download but has only a public repository. In
this case, FETCH_METHOD can be set to cvs, git or svn according to
the kind of repository available. MASTER_SITES is then interpreted as
a repository of the form url[@revision[+module]], where the bits
between square brackets are optional and refer to a particular revision
and module in the repository located at url. url can take any form
supported by the underlying fetch tool (cvs, git or svn). It is strongly
advised to define at least a specific revision to be checked out, so that
the package can be reproducibly installed in a known state.

MASTER_REPOSITORY defines a VCS repository from where a “make
checkout” will download the latest revision of a software. MASTER_REPOSITORY

3.1. PACKAGE FILES, DIRECTORIES AND CONTENTS 27

is a list of 2 or 3 elements. The first element is the VCS tool to be used:
it must be one of cvs, git or svn. The second element is the location
of the repository. It must be written in a syntax understood by the ac-
tual VCS tool. The third optional element is a list of specific elements
to be checked out instead of the default (the whole repository).

CHECKOUT_VCS_OPTS is a list of options used when fetching a
package via a make checkout command. The options are passed to the
“cvs checkout”, “git clone” or “svn checkout” command that extract
the source archive.

The second section contains information about separately downloaded
patches, if any.

PATCHFILES Name(s) of additional files that contain distribution patches
distributed by the author or other maintainers. There is no default.
robotpkg will look for them at PATCH_SITES. They will automatically
be uncompressed before patching if the names end with .gz or .Z.

PATCH_SITES Primary location(s) for distribution patch files (see PATCHFILES
above) if not found locally.

The third section contains the following variables.

MAINTAINER is the email address of the person who feels responsi-
ble for this package, and who is most likely to look at problems or
questions regarding this package. Other developers may contact the
MAINTAINER before making changes to the package, but are not re-
quired to do so. When packaging a new program, set MAINTAINER to
yourself. If you really can’t maintain the package for future updates,
set it to <robotpkg@laas.fr>.

HOMEPAGE is a URL where users can find more information about the
package.

COMMENT is a one-line description of the package (should not include
the package name).

LICENSE Denoting that a package may be installed and used according to
a particular license is done by placing the license in robotpkg/licenses
and setting the LICENSE variable to a string identifying the license
file, e.g. in shell/eltclsh:

LICENSE= 2-clause-bsd

28 CHAPTER 3. THE ROBOTPKG DEVELOPER’S GUIDE

The license tag mechanism is intended to address copyright-related is-
sues surrounding building, installing and using a package, and not to
address redistribution issues (see RESTRICTED and NO_PUBLIC_SRC,
etc.). Packages with redistribution restrictions should set these tags.

Other variables affecting the build process may be gathered in their own
section.

PKG_SUPPORTED_OPTIONS is the list of build options supported
by the package. A number of related variables are used in combination
with PKG_SUPPORTED_OPTIONS. See Section 3.2.1, Adding build options
to a package, for details.

3.1.2 distinfo

The distinfo file contains the message digest, or checksum, of each distfile
needed for the package. This ensures that the distfiles retrieved from the
Internet have not been corrupted during transfer or altered by a malign
force to introduce a security hole. Due to recent rumor about weaknesses of
digest algorithms, all distfiles are protected using both SHA1 and RMD160
message digests, as well as the file size.

The distinfo file also contains the checksums for all the patches found in
the patches directory (see Section 3.1.4, patches/*).

To regenerate the distinfo file, use the make distinfo or make mdi com-
mand.

3.1.3 PLIST

This file governs the files that are installed on your system: all the binaries,
manual pages, etc. There are other directives which may be entered in this
file, to control the creation and deletion of directories, and the location of
inserted files.

The names used in the PLIST are relative to the installation prefix
(${PREFIX}), which means that it cannot register files outside this directory
(absolute path names are not allowed). As a general sanity rule, robotpkg
must not alter any files outside ${PREFIX} anyway and, in particular, not
modify automatically existing configuration files. If a package needs to in-
stall files outside ${PREFIX}, the best option is to install them with robotpkg
inside ${PREFIX} (e.g. ${PREFIX}/etc or ${PREFIX}/var) and create a
MESSAGE file that will instruct the user to manually link or copy the files in
question to their final location. See the package hardware/ieee1394-kmod
for an example of such package.

In order to create or update a PLIST, you can use the make print-PLIST
command to output a PLIST that matches any new installed files since the
package was extracted. This command will generate a PLIST.guess file

3.2. GENERAL OPERATION 29

which you must move manually to PLIST after reviewing the result of the
semi-automatic generation. In order to fine tune the PLIST or its semi-
automatic generation, specific variables documented in section 3.2.2, Cus-
tomizing the PLIST, and section 3.2.3, Customizing the semi-automatic
PLIST generation, may be used.

3.1.4 patches/*

Some packages may not work out-of-the box with robotpkg. Therefore, a
number of custom patch files may be needed to make the package work.
These patch files are found in the patches/ directory. If you want to share
patches between multiple packages in robotpkg, e.g. because they use the
same distfiles, set PATCHDIR to the path where the patch files can be found,
e.g.:

PATCHDIR= ../../devel/boost/patches

The file names of the patch files must be of the form patch-*, and they
are usually named patch-[a-z][a-z]. In the patch phase, these patches are
automatically applied to the files in ${WRKSRC} directory after extracting
them, in alphabetic order.

The patch-* files should be in diff -bu format, and apply without a
fuzz to avoid problems. (To force patches to apply with fuzz you can set
PATCH_FUZZ_FACTOR=-F2 in a package’s Makefile).

Each patch file should be commented so that any developer who knows
the code of the application can make some use of the patch. Special care
should be taken for the upstream developers, since we generally want that
they accept robotpkg patches, so there is less work in the future. When
adding a patch that corrects a problem in the distfile (rather than e.g. en-
forcing robotpkg’s view of where man pages should go), send the patch as a
bug report to the maintainer. This benefits non-robotpkg users of the pack-
age, and usually makes it possible to remove the patch in future version.

When you add or modify existing patch files, remember to generate the
checksums for the patch files by using the make mdi command, see Sec-
tion 3.1.2, distinfo.

3.2 General operation

3.2.1 Adding build options to a package

Build options (see section 2.4.1, Selecting build options, for details) can be
defined in a package by properly configuring the following variables.

PKG_SUPPORTED_OPTIONS This is a list of build options sup-
ported by the package. This variable should be set in a package
Makefile. E.g.,

30 CHAPTER 3. THE ROBOTPKG DEVELOPER’S GUIDE

PKG_SUPPORTED_OPTIONS= ipv6 ssl

If this variable is not defined, PKG_OPTIONS is set to the empty list and
the package is otherwise treated as not using the options framework.

PKG_OPTION_DESCR.<opt> This is the textual description of the
option <opt> which is displayed by the make show-options target.
E.g.,

PKG_OPTION_DESCR.bar= Enable the bar option.

PKG_OPTION_SET.<opt> (resp. PKG_OPTION_UNSET.<opt>)
This is a makefile fragment that is evaluated when the option <opt>
is set (resp unset) for the package. E.g.,

PKG_OPTION_SET.bar= CFLAGS+=-DBAR
PKG_OPTION_UNSET.bar= CFLAGS+=-DNO_BAR

Complex (multiline) _SET or _UNSET actions can be defined with the
define command of GNU-make. It is for instance possible to add
additional dependencies: see the example below.

PKG_OPTIONS_OPTIONAL_GROUPS This is a list of names of
groups of mutually exclusive options. The options in each group are
listed in PKG_OPTIONS_GROUP.<groupname>. The most specific setting
of any option from the group takes precedence over all other options
in the group. Options from the groups will be automatically added to
PKG_SUPPORTED_OPTIONS.

PKG_OPTIONS_REQUIRED_GROUPS Like PKG_OPTIONS_OPTIONAL_GROUPS,
but building the packages will fail if no option from the group is se-
lected.

PKG_OPTIONS_NONEMPTY_SETS This is a list of names of sets
of options. At least one option from each set must be selected. The op-
tions in each set are listed in PKG_OPTIONS_SET.<setname>. Options
from the sets will be automatically added to PKG_SUPPORTED_OPTIONS.

PKG_OPTIONS_SUFFIX The suffix in PKG_OPTIONS.suffix variable
the user can set to enable or disable options specifically for this pack-
age. Defaults to ${PKGBASE}.

PKG_SUGGESTED_OPTIONS This is a list of build options which
are enabled by default. This defaults to the empty list.

3.2. GENERAL OPERATION 31

Here is an example Makefile fragment for a ’wibble’ package. This frag-
ment should be included in the ’wibble’ package Makefile.

PKG_OPTIONS_SUFFIX= wibble # this is the default
PKG_SUPPORTED_OPTIONS= foo bar
PKG_OPTIONS_OPTIONAL_GROUPS= robot
PKG_OPTIONS_GROUP.robot= lama hrp2
PKG_SUGGESTED_OPTIONS= foo

PKG_OPTION_DESCR.foo= Enable the foo option.
PKG_OPTION_DESCR.bar= Build with the bar package.
PKG_OPTION_DESCR.lama= Build for the lama robot.
PKG_OPTION_DESCR.hrp2= Build for the hrp2 robot.

define PKG_OPTION_SET.bar
CFLAGS+=-DNO_BAR
include ../../pkg/bar/depend.mk
endef
PKG_OPTION_UNSET.bar= CFLAGS+=-DNO_BAR

3.2.2 Customizing the PLIST

The packing list of a package is usually computed from the PLIST file located
in the package directory. The following variables determine how the final
packing list is setup:

PLIST_SRC The source file(s) for the final packing list. By default, its
value is constructed from the PLIST.* files within the package direc-
tory:

PLIST_SRC+= ${PKGDIR}/PLIST.${OS_KERNEL}
PLIST_SRC+= ${PKGDIR}/PLIST.${OPSYS}
PLIST_SRC+= ${PKGDIR}/PLIST.${MACHINE_ARCH}
PLIST_SRC+= ${PKGDIR}/PLIST.${OPSYS}-${MACHINE_ARCH}
PLIST_SRC+= ${PKGDIR}/PLIST

If a Makefile sets PLIST_SRC, the defaults are not used.

DYNAMIC_PLIST_DIRS A list of directories, absolute or relative to
the installation ${PREFIX}, whose contents are dynamically added to
the final packing list. This is useful to handle non-deterministic pack-
ing lists, most notably those generated by doxygen. This should be
used with care, since DYNAMIC_PLIST_DIRS somewhat defeats the pur-
pose of the packing list.

32 CHAPTER 3. THE ROBOTPKG DEVELOPER’S GUIDE

PLIST_SUBST The PLIST file(s) of a package may also contain variable
references (in the ${VAR} form) that are expanded at intallation time.
The following variables are supported by default:

PKGBASE
PKGNAME
PKGVERSION

OPSYS
OS_VERSION
OS_KERNEL
OS_KERNEL_VERSION

PKGMANDIR
PKGINFODIR

PLIST.<opt> # for all supported options
PLIST.no<opt>

PLIST.<opt> is special: one such variable is defined for each supported
build option of the package. It can be used to dynamically enable an
entry of the packing list, depending on the build options configuration.
A ${PLIST.<opt>} variable may only be present only at the begin-
ning of a line. Technically, ${PLIST.<opt>} expands to a packing list
comment @comment when the option <opt> is not enabled, and to the
empty string otherwise.
PLIST.no<opt> is similar to PLIST.<opt>, but it enables a PLIST
entry only if the corresponding option is not enabled.
Other substitutions may be added by adding definitions to the PLIST_SUBST
variable. For instance, a package may define the FOO variable substi-
tution like so:

PLIST_SUBST+= FOO=${FOO}

This would instruct the packing list generator to replace all occurences
of ${FOO} by the value of the ${FOO} variable in the Makefile.

GENERATE_PLIST A sequence of commands, terminating in a semi-
colon, that outputs contents for a PLIST to stdout and is appended
to the contents of ${PLIST_SRC}. The default works for almost all
packages, and it is usually not needed to define a custom command.

PLIST_FILTER A sequence of commands, each starting with a pipe,
that filter out the packing list. This is to be used only in rare situa-
tions, and a standard package should not need to customize this.

3.2. GENERAL OPERATION 33

3.2.3 Customizing the semi-automatic PLIST generation

The semi-automatic initial PLIST generation does not handle package op-
tions. If the list of installed files depends on the package build options,
${PLIST.<opt>} variable references, detailed in section 3.2.2, Customizing
the PLIST, must be manually added to the result of make print-PLIST.

3.2.4 Incrementing versions when fixing an existing package

When making fixes to an existing package it can be useful to change the
version number in PKGNAME. To avoid conflicting with future versions by the
original author, a "r1", "r2", ... suffix can be used on package versions by
setting PKGREVISION=1 (2, ...) in the package Makefile. E.g.

DISTNAME= foo-17.42
PKGREVISION= 9

will result in a PKGNAME of "foo-17.42r9". The "r" is treated like a "." by the
package tools.

PKGREVISION should be incremented for any non-trivial change in the
resulting binary package. Without a PKGREVISION bump, someone with the
previous version installed has no way of knowing that their package is out of
date. Thus, changes without increasing PKGREVISION are essentially labeled
"this is so trivial that no reasonable person would want to upgrade", and this
is the rough test for when increasing PKGREVISION is appropriate. Examples
of changes that do not merit increasing PKGREVISION are:

• Changing HOMEPAGE, MAINTAINER or comments in Makefile.

• Changing build variables if the resulting binary package is the same.

• Changing DESCR.

• Adding PKG_OPTIONS if the default options don’t change.

Examples of changes that do merit an increase to PKGREVISION include:

• Security fixes

• Changes or additions to a patch file

• Changes to the PLIST

• A dependency is changed or renamed.

PKGREVISION must also be incremented when dependencies have ABI
changes.

When a new release of the package is released, the PKGREVISION must
be removed.

34 CHAPTER 3. THE ROBOTPKG DEVELOPER’S GUIDE

3.2.5 Substituting variable text in the package files

When you want to replace the same text in multiple files or when the re-
placement text varies, patches alone cannot help. This is where the SUBST
framework comes in. It provides an easy-to-use interface for replacing text
in files. Example:

SUBST_CLASSES+= fix-paths
SUBST_STAGE.fix-paths= pre-configure
SUBST_MESSAGE.fix-paths= Fixing absolute paths.
SUBST_FILES.fix-paths= src/*.c
SUBST_SED.fix-paths= -e ’s,"/usr/local,"${PREFIX},g’

SUBST_CLASSES is a list of identifiers that are used to identify the dif-
ferent SUBST blocks that are defined. The SUBST framework is used by
robotpkg , so it is important to always use the += operator with this vari-
able. Otherwise some substitutions may be skipped.

The remaining variables of each SUBST block are parameterized with the
identifier from the first line (fix-paths in this case).

SUBST_STAGE.* specifies the stage at which the replacement will take
place. All combinations of pre-, do- and post- together with a phase name
are possible, though only few are actually used. Most commonly used are
post-patch and pre-configure. Of these two, pre-configure should be pre-
ferred because then it is possible to run make patch and have the state
after applying the patches but before making any other changes. This is
especially useful when you are debugging a package in order to create new
patches for it. Similarly, post-build is preferred over pre-install, because the
install phase should generally be kept as simple as possible. When you use
post-build, you have the same files in the working directory that will be
installed later, so you can check if the substitution has succeeded.

SUBST_MESSAGE.* is an optional text that is printed just before the sub-
stitution is done.

SUBST_FILES.* is the list of shell globbing patterns that specifies the
files in which the substitution will take place. The patterns are interpreted
relatively to the WRKSRC directory.

SUBST_SED.* is a list of arguments to sed(1) that specify the actual
substitution. Every sed command should be prefixed with -e, so that all
SUBST blocks look uniform.

There are some more variables, but they are so seldomly used that they
are only documented in the mk/internal/subst.mk file.

3.3 The build phase

For building a package, a rough equivalent of the following code is executed.

3.3. THE BUILD PHASE 35

for d in ${BUILD_DIRS}; do \
cd ${WRKSRC} \
&& cd ${d} \
&& env ${MAKE_ENV} \

${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
-f ${MAKE_FILE} \
${BUILD_TARGET}

done

The following variables affecting the build process of a package may be
defined in a package Makefile:

NO_BUILD (default: unset). If there is no build step at all, set NO_BUILD
to ”yes”.

MAKE_PROGRAM (default: MAKE) is the program used to perform
the actual build in a package.

BUILD_DIRS (default: “.”) is a list of pathnames relative to WRKSRC. In
each of these directories, MAKE_PROGRAM is run with the environment
MAKE_ENV and arguments BUILD_MAKE_FLAGS.

BUILD_TARGET (default: “all”) is the default make target for building
the package.

MAKE_JOBS_SAFE Whether the package supports parallel builds. If
set to yes, at most MAKE_JOBS jobs are carried out in parallel. The de-
fault value is “yes”, and packages that don’t support it must explicitly
set it to “no”.

	Introduction
	What is robotpkg?
	Why robotpkg?
	Supported platforms
	Overview
	Terminology
	Roles involved in robotpkg
	Typography

	The robotpkg user's guide
	Where to get robotpkg and how to keep it up-to-date
	Getting the binary bootstrap kit
	Getting robotpkg for source compilation
	Keeping robotpkg up-to-date

	Bootstrapping robotpkg
	Bootstrapping via the binary kit
	Bootstrapping from source

	Using robotpkg
	Building packages from source
	Building packages from a repository checkout
	Installing binary packages
	Removing packages
	Getting information about installed packages
	Other administrative functions
	Available make targets

	Configuring robotpkg
	Selecting build options
	Selecting build alternatives
	Defining collections of packages
	Package specific configuration variables
	General configuration variables
	Variables affecting the build process
	Additional flags to the compiler

	Creating binary packages for everything
	Initial setup
	Running bulk builds
	Generating pretty reports
	Automated bulk builds

	The robotpkg developer's guide
	Package files, directories and contents
	Makefile
	distinfo
	PLIST
	patches/*

	General operation
	Adding build options to a package
	Customizing the PLIST
	Customizing the semi-automatic PLIST generation
	Incrementing versions when fixing an existing package
	Substituting variable text in the package files

	The build phase

