Loading...
Searching...
No Matches
AlignedVector3
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_ALIGNED_VECTOR3
11#define EIGEN_ALIGNED_VECTOR3
12
13#include <Eigen/Geometry>
14
15namespace Eigen {
16
25
26
37// TODO specialize Cwise
38template<typename _Scalar> class AlignedVector3;
39
40namespace internal {
41template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
42 : traits<Matrix<_Scalar,3,1,0,4,1> >
43{
44};
45}
46
47template<typename _Scalar> class AlignedVector3
48 : public MatrixBase<AlignedVector3<_Scalar> >
49{
50 typedef Matrix<_Scalar,4,1> CoeffType;
51 CoeffType m_coeffs;
52 public:
53
54 typedef MatrixBase<AlignedVector3<_Scalar> > Base;
55 EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
56 using Base::operator*;
57
58 inline Index rows() const { return 3; }
59 inline Index cols() const { return 1; }
60
61 Scalar* data() { return m_coeffs.data(); }
62 const Scalar* data() const { return m_coeffs.data(); }
63 Index innerStride() const { return 1; }
64 Index outerStride() const { return 3; }
65
66 inline const Scalar& coeff(Index row, Index col) const
67 { return m_coeffs.coeff(row, col); }
68
69 inline Scalar& coeffRef(Index row, Index col)
70 { return m_coeffs.coeffRef(row, col); }
71
72 inline const Scalar& coeff(Index index) const
73 { return m_coeffs.coeff(index); }
74
75 inline Scalar& coeffRef(Index index)
76 { return m_coeffs.coeffRef(index);}
77
78
79 inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
80 : m_coeffs(x, y, z, Scalar(0))
81 {}
82
83 inline AlignedVector3(const AlignedVector3& other)
84 : Base(), m_coeffs(other.m_coeffs)
85 {}
86
87 template<typename XprType, int Size=XprType::SizeAtCompileTime>
88 struct generic_assign_selector {};
89
90 template<typename XprType> struct generic_assign_selector<XprType,4>
91 {
92 inline static void run(AlignedVector3& dest, const XprType& src)
93 {
94 dest.m_coeffs = src;
95 }
96 };
97
98 template<typename XprType> struct generic_assign_selector<XprType,3>
99 {
100 inline static void run(AlignedVector3& dest, const XprType& src)
101 {
102 dest.m_coeffs.template head<3>() = src;
103 dest.m_coeffs.w() = Scalar(0);
104 }
105 };
106
107 template<typename Derived>
108 inline AlignedVector3(const MatrixBase<Derived>& other)
109 {
110 generic_assign_selector<Derived>::run(*this,other.derived());
111 }
112
113 inline AlignedVector3& operator=(const AlignedVector3& other)
114 { m_coeffs = other.m_coeffs; return *this; }
115
116 template <typename Derived>
117 inline AlignedVector3& operator=(const MatrixBase<Derived>& other)
118 {
119 generic_assign_selector<Derived>::run(*this,other.derived());
120 return *this;
121 }
122
123 inline AlignedVector3 operator+(const AlignedVector3& other) const
124 { return AlignedVector3(m_coeffs + other.m_coeffs); }
125
126 inline AlignedVector3& operator+=(const AlignedVector3& other)
127 { m_coeffs += other.m_coeffs; return *this; }
128
129 inline AlignedVector3 operator-(const AlignedVector3& other) const
130 { return AlignedVector3(m_coeffs - other.m_coeffs); }
131
132 inline AlignedVector3 operator-=(const AlignedVector3& other)
133 { m_coeffs -= other.m_coeffs; return *this; }
134
135 inline AlignedVector3 operator*(const Scalar& s) const
136 { return AlignedVector3(m_coeffs * s); }
137
138 inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
139 { return AlignedVector3(s * vec.m_coeffs); }
140
141 inline AlignedVector3& operator*=(const Scalar& s)
142 { m_coeffs *= s; return *this; }
143
144 inline AlignedVector3 operator/(const Scalar& s) const
145 { return AlignedVector3(m_coeffs / s); }
146
147 inline AlignedVector3& operator/=(const Scalar& s)
148 { m_coeffs /= s; return *this; }
149
150 inline Scalar dot(const AlignedVector3& other) const
151 {
152 eigen_assert(m_coeffs.w()==Scalar(0));
153 eigen_assert(other.m_coeffs.w()==Scalar(0));
154 return m_coeffs.dot(other.m_coeffs);
155 }
156
157 inline void normalize()
158 {
159 m_coeffs /= norm();
160 }
161
162 inline AlignedVector3 normalized() const
163 {
164 return AlignedVector3(m_coeffs / norm());
165 }
166
167 inline Scalar sum() const
168 {
169 eigen_assert(m_coeffs.w()==Scalar(0));
170 return m_coeffs.sum();
171 }
172
173 inline Scalar squaredNorm() const
174 {
175 eigen_assert(m_coeffs.w()==Scalar(0));
176 return m_coeffs.squaredNorm();
177 }
178
179 inline Scalar norm() const
180 {
181 using std::sqrt;
182 return sqrt(squaredNorm());
183 }
184
185 inline AlignedVector3 cross(const AlignedVector3& other) const
186 {
187 return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
188 }
189
190 template<typename Derived>
191 inline bool isApprox(const MatrixBase<Derived>& other, const RealScalar& eps=NumTraits<Scalar>::dummy_precision()) const
192 {
193 return m_coeffs.template head<3>().isApprox(other,eps);
194 }
195
196 CoeffType& coeffs() { return m_coeffs; }
197 const CoeffType& coeffs() const { return m_coeffs; }
198};
199
200namespace internal {
201
202template<typename _Scalar>
203struct eval<AlignedVector3<_Scalar>, Dense>
204{
205 typedef const AlignedVector3<_Scalar>& type;
206};
207
208template<typename Scalar>
209struct evaluator<AlignedVector3<Scalar> >
210 : evaluator<Matrix<Scalar,4,1> >
211{
212 typedef AlignedVector3<Scalar> XprType;
213 typedef evaluator<Matrix<Scalar,4,1> > Base;
214
215 evaluator(const XprType &m) : Base(m.coeffs()) {}
216};
217
218}
219
221
222}
223
224#endif // EIGEN_ALIGNED_VECTOR3
A vectorization friendly 3D vector.
Definition AlignedVector3:49
Namespace containing all symbols from the Eigen library.
Definition AdolcForward:45