Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 Cndcurves::Bern< Numeric >
 CBezierCurveRepresents a Bezier curve of arbitrary dimension and order. For degree lesser than 4, the evaluation is analitycal. Otherwise the bernstein polynoms are used to evaluate the spline at a given location
 CCubicHermiteSplineRepresents a set of cubic hermite splines defining a continuous function $p(t)$. A hermite cubic spline is a minimal degree polynom interpolating a function in two points $P_i$ and $P_{i+1}$ with its tangent $m_i$ and $m_{i+1}$.
A hermite cubic spline :
 Cndcurves::helpers::effector_spline_rotationRepresents a trajectory for and end effector. uses the method effector_spline to create a spline trajectory. Additionally, handles the rotation of the effector as follows: does not rotate during the take off and landing phase, then uses a SLERP algorithm to interpolate the rotation in the quaternion space
 CExactCubicRepresents a set of cubic splines defining a continuous function crossing each of the waypoint given in its initialization
 CPiecewiseCurveRepresent a piecewise curve. We can add some new curve, but the starting time of the curve to add should be equal to the ending time of the actual piecewise_curve.
\ Example : A piecewise curve composed of three curves cf0, cf1 and cf2 where cf0 is defined between $[T0_{min},T0_{max}]$, cf1 between $[T0_{max},T1_{max}]$ and cf2 between $[T1_{max},T2_{max}]$. On the piecewise polynomial curve, cf0 is located between $[T0_{min},T0_{max}[$, cf1 between $[T0_{max},T1_{max}[$ and cf2 between $[T1_{max},T2_{max}]$
 Cndcurves::optimization::problem_data< Point, Numeric, Safe >
 Cndcurves::optimization::quadratic_problem< Point, Numeric >
 Cndcurves::quadratic_variable< Numeric >
 Cndcurves::quadratic_variable< Numeric >
 Cndcurves::serialization::Serializable
 Cndcurves::curve_abc< double, double, false, Eigen::Matrix< double, Eigen::Dynamic, 1 >, Eigen::Matrix< double, Eigen::Dynamic, 1 > >
 Cndcurves::constant_curve< Time, Numeric, Safe, Point, Point_derivate >Represents a constant_curve curve, always returning the same value and a null derivative
 Cndcurves::piecewise_curve< Time, Numeric, Safe, Point, Point_derivate, CurveType >
 Cndcurves::exact_cubic< Numeric, Numeric, false, point_one_dim_t >
 Cndcurves::curve_abc< double, double, false, matrix3_t, point3_t >
 Cndcurves::SO3Linear< Time, Numeric, Safe >Represents a linear interpolation in SO3, using the slerp method provided by Eigen::Quaternion
 Cndcurves::curve_abc< double, double, false, Eigen::Matrix< double, Eigen::Dynamic, 1 > >
 Cndcurves::bezier_curve< Time, Numeric, Safe, Point >
 Cndcurves::cubic_hermite_spline< Time, Numeric, Safe, Point >
 Cndcurves::polynomial< Time, Numeric, Safe, Point, T_Point >Represents a polynomial of an arbitrary order defined on the interval $[t_{min}, t_{max}]$. It follows the equation :
$ x(t) = a + b(t - t_{min}) + ... + d(t - t_{min})^N $
where N is the order and $ t \in [t_{min}, t_{max}] $
 Cndcurves::sinusoidal< Time, Numeric, Safe, Point >Represents a sinusoidal curve, evaluating the following equation: p0 + amplitude * (sin(2pi/T + phi)
 Cndcurves::curve_abc< double, double, false, Eigen::Transform< double, 3, Eigen::Affine >, Eigen::Matrix< double, 6, 1 > >
 Cndcurves::SE3Curve< Time, Numeric, Safe >Composition of a curve of any type of dimension 3 and a curve representing an rotation (in current implementation, only SO3Linear can be used for the rotation part) The output is a vector of size 7 (pos_x,pos_y,pos_z,quat_x,quat_y,quat_z,quat_w) The output of the derivative of any order is a vector of size 6 (linear_x,linear_y,linear_z,angular_x,angular_y,angular_z)
 Cndcurves::curve_abc< Time, Numeric, Safe, Point, Point_derivate >Represents a curve of dimension Dim. If value of parameter Safe is false, no verification is made on the evaluation of the curve
 Cndcurves::piecewise_curve< double, double, false, Eigen::Matrix< double, Eigen::Dynamic, 1 > >
 Cndcurves::exact_cubic< Time, Numeric, Safe, Point, T_Point, SplineBase >
 Cndcurves::helpers::rotation_spline
 Cndcurves::curve_constraints< Point >
 Cndcurves::optimization::problem_definition< Point, Numeric >
 Cndcurves::linear_variable< Numeric, Safe >
 Cndcurves::SO3Smooth< Time, Numeric, Safe >