#include "jrl/mathtools/matrix3x3.hh"
Macros | |
#define | MAL_S3x3_MATRIX_TYPE(type) jrlMathTools::Matrix3x3<type> |
#define | MAL_S3x3_MATRIX(name, type) jrlMathTools::Matrix3x3<type> name |
#define | MAL_S3x3_MATRIX_CLEAR(name) name.setZero() |
#define | MAL_S3x3_MATRIX_SET_IDENTITY(name) name.setIdentity() |
#define | MAL_S3x3_INVERSE(name, inv_matrix, type) name.Inversion(inv_matrix) |
#define | MAL_S3x3_RET_TRANSPOSE(matrix) matrix.Transpose() |
#define | MAL_S3x3_TRANSPOSE_A_in_At(A, At) A.Transpose(At) |
#define | MAL_S3x3_RET_A_by_B(A, B) A*B |
#define | MAL_S3x3_C_eq_A_by_B(C, A, B) A.CeqthismulB(B,C); |
#define | MAL_S3x3_MATRIX_ACCESS_I(name, i) name[i] |
#define | MAL_S3x3_MATRIX_ACCESS_I_J(name, i, j) name(i,j) |
Typedefs | |
typedef jrlMathTools::Matrix3x3< double > | matrix3d |
#define MAL_S3x3_C_eq_A_by_B | ( | C, | |
A, | |||
B | |||
) | A.CeqthismulB(B,C); |
#define MAL_S3x3_INVERSE | ( | name, | |
inv_matrix, | |||
type | |||
) | name.Inversion(inv_matrix) |
#define MAL_S3x3_MATRIX | ( | name, | |
type | |||
) | jrlMathTools::Matrix3x3<type> name |
#define MAL_S3x3_MATRIX_ACCESS_I | ( | name, | |
i | |||
) | name[i] |
#define MAL_S3x3_MATRIX_ACCESS_I_J | ( | name, | |
i, | |||
j | |||
) | name(i,j) |
#define MAL_S3x3_MATRIX_CLEAR | ( | name | ) | name.setZero() |
#define MAL_S3x3_MATRIX_SET_IDENTITY | ( | name | ) | name.setIdentity() |
#define MAL_S3x3_MATRIX_TYPE | ( | type | ) | jrlMathTools::Matrix3x3<type> |
#define MAL_S3x3_RET_A_by_B | ( | A, | |
B | |||
) | A*B |
#define MAL_S3x3_RET_TRANSPOSE | ( | matrix | ) | matrix.Transpose() |
#define MAL_S3x3_TRANSPOSE_A_in_At | ( | A, | |
At | |||
) | A.Transpose(At) |
typedef jrlMathTools::Matrix3x3<double> matrix3d |
This is a very fast and simple implementation of a 3D matrix class of double.