Go to the documentation of this file.
9 #ifndef _CLASS_LINEAR_VARIABLE
10 #define _CLASS_LINEAR_VARIABLE
14 #include "serialization/archive.hpp"
15 #include "serialization/eigen-matrix.hpp"
25 template <
typename Numeric =
double,
bool Safe = true>
26 struct linear_variable :
public serialization::Serializable {
27 typedef Eigen::Matrix<Numeric, Eigen::Dynamic, 1>
vector_x_t;
28 typedef Eigen::Matrix<Numeric, Eigen::Dynamic, Eigen::Dynamic>
matrix_x_t;
44 if (Safe &&
B().cols() != val.rows())
45 throw std::length_error(
"Cannot evaluate linear variable, variable value does not have the correct dimension");
46 return B() * val +
c();
54 if (w1.
isZero())
return *
this;
70 if (w1.
isZero())
return *
this;
109 throw std::invalid_argument(
"Can't perform cross product on linear variables with dimensions != 3 ");
111 throw std::invalid_argument(
"Can't perform cross product on linear variables more than one unknown ");
114 if ((
B().squaredNorm() -
B().diagonal().squaredNorm() > MARGIN ) || (other.
B().squaredNorm() - other.
B().diagonal().squaredNorm() > MARGIN ) )
115 throw std::invalid_argument(
"Can't perform cross product on linear variables if B is not diagonal ");
118 skew<typename linear_variable_t::matrix_3_t, typename linear_variable_t::vector_3_t>(
c()) * other.
B();
143 std::size_t
size()
const {
return zero ? 0 : std::max(B_.cols(), c_.size()); }
154 const double prec = Eigen::NumTraits<Numeric>::dummy_precision())
const {
155 return (*
this - other).norm() < prec;
165 template <
class Archive>
166 void serialize(Archive& ar,
const unsigned int version) {
170 ar& boost::serialization::make_nvp(
"B_", B_);
171 ar& boost::serialization::make_nvp(
"c_", c_);
172 ar& boost::serialization::make_nvp(
"zero", zero);
181 template <
typename N,
bool S>
187 template <
typename N,
bool S>
193 template <
typename N,
bool S>
198 template <
typename N,
bool S>
204 template <
typename N,
bool S>
210 template <
typename N,
bool S>
216 template <
typename BezierFixed,
typename BezierLinear,
typename X>
218 typename BezierFixed::t_point_t fixed_wps;
219 for (
typename BezierLinear::cit_point_t cit = bIn.waypoints().begin(); cit != bIn.waypoints().end(); ++cit)
220 fixed_wps.push_back(cit->operator()(x));
221 return BezierFixed(fixed_wps.begin(), fixed_wps.end(), bIn.T_min_, bIn.T_max_);
224 template <
typename N,
bool S>
226 return os <<
"linear_variable: \n \t B:\n"<< l.B() <<
"\t c: \n" << l.c().transpose();
231 DEFINE_CLASS_TEMPLATE_VERSION(SINGLE_ARG(
typename Numeric,
bool Safe),
233 #endif //_CLASS_LINEAR_VARIABLE
bool isZero() const
Definition: linear_variable.h:160
static linear_variable_t X(size_t dim=0)
Get a linear variable equal to the variable.
Definition: linear_variable.h:135
linear_variable(const vector_x_t &c)
Definition: linear_variable.h:34
class allowing to create a Bezier curve of dimension 1 <= n <= 3.
Eigen::Vector3d cross(const Eigen::VectorXd &a, const Eigen::VectorXd &b)
Definition: cross_implementation.h:15
linear_variable(const matrix_x_t &B, const vector_x_t &c)
Definition: linear_variable.h:35
const matrix_x_t & B() const
Definition: linear_variable.h:158
linear_variable_t & operator+=(const linear_variable_t &w1)
Add another linear variable.
Definition: linear_variable.h:53
const vector_x_t & c() const
Definition: linear_variable.h:159
Eigen::Matrix< Numeric, 3, 1 > vector_3_t
Definition: linear_variable.h:29
static linear_variable_t Zero(size_t dim=0)
Get a linear variable equal to zero.
Definition: linear_variable.h:127
bool isApprox(const linear_variable_t &other, const double prec=Eigen::NumTraits< Numeric >::dummy_precision()) const
Check if actual linear variable and other are approximately equal given a precision treshold....
Definition: linear_variable.h:153
bezier_curve< T, N, S, P > operator/(const bezier_curve< T, N, S, P > &p1, const double k)
Definition: bezier_curve.h:714
linear_variable_t & operator-=(const linear_variable_t &w1)
Substract another linear variable.
Definition: linear_variable.h:69
std::ostream & operator<<(std::ostream &os, const linear_variable< N, S > &l)
Definition: linear_variable.h:225
Definition: bernstein.h:20
Numeric norm() const
Get norm of linear variable (Norm of B plus norm of C).
Definition: linear_variable.h:147
Eigen::Matrix< Numeric, 3, 3 > matrix_3_t
Definition: linear_variable.h:30
bezier_curve< T, N, S, P > operator*(const bezier_curve< T, N, S, P > &p1, const double k)
Definition: bezier_curve.h:720
linear_variable(const linear_variable_t &other)
Definition: linear_variable.h:36
bezier_curve< T, N, S, P > operator+(const bezier_curve< T, N, S, P > &p1, const bezier_curve< T, N, S, P > &p2)
Definition: bezier_curve.h:666
interface for a Curve of arbitrary dimension.
BezierFixed evaluateLinear(const BezierLinear &bIn, const X x)
Definition: linear_variable.h:217
vector_x_t operator()(const Eigen::Ref< const vector_x_t > &val) const
Linear evaluation for vector x.
Definition: linear_variable.h:42
linear_variable_t & operator*=(const double d)
Multiply by a constant : p_i / d = B_i*x*d + c_i*d.
Definition: linear_variable.h:95
linear_variable_t cross(const linear_variable_t &other) const
Compute the cross product of the current linear_variable and the other. This method of course only ma...
Definition: linear_variable.h:107
void serialize(Archive &ar, const unsigned int version)
Definition: linear_variable.h:166
Eigen::Matrix< Numeric, Eigen::Dynamic, Eigen::Dynamic > matrix_x_t
Definition: linear_variable.h:28
Eigen::Matrix< Numeric, Eigen::Dynamic, 1 > vector_x_t
Definition: linear_variable.h:27
friend class boost::serialization::access
Definition: linear_variable.h:163
linear_variable()
Definition: linear_variable.h:33
std::size_t size() const
Get dimension of linear variable.
Definition: linear_variable.h:143
linear_variable_t & operator/=(const double d)
Divide by a constant : p_i / d = B_i*x/d + c_i/d.
Definition: linear_variable.h:85
linear_variable< Numeric > linear_variable_t
Definition: linear_variable.h:31
bezier_curve< T, N, S, P > operator-(const bezier_curve< T, N, S, P > &p1)
Definition: bezier_curve.h:672
double Numeric
Definition: effector_spline.h:26