|
| polynomial () |
| Empty constructor. More...
|
|
| polynomial (const coeff_t &coefficients, const time_t min, const time_t max) |
| Constructor. More...
|
|
| polynomial (const T_Point &coefficients, const time_t min, const time_t max) |
| Constructor. More...
|
|
template<typename In > |
| polynomial (In zeroOrderCoefficient, In out, const time_t min, const time_t max) |
| Constructor. More...
|
|
| polynomial (const Point &init, const Point &end, const time_t min, const time_t max) |
| Constructor from boundary condition with C0 : create a polynomial that connect exactly init and end (order 1) More...
|
|
| polynomial (const Point &init, const Point &d_init, const Point &end, const Point &d_end, const time_t min, const time_t max) |
| Constructor from boundary condition with C1 : create a polynomial that connect exactly init and end and thier first order derivatives(order 3) More...
|
|
| polynomial (const Point &init, const Point &d_init, const Point &dd_init, const Point &end, const Point &d_end, const Point &dd_end, const time_t min, const time_t max) |
| Constructor from boundary condition with C2 : create a polynomial that connect exactly init and end and thier first and second order derivatives(order 5) More...
|
|
| ~polynomial () |
| Destructor. More...
|
|
| polynomial (const polynomial &other) |
|
virtual point_t | operator() (const time_t t) const |
| Evaluation of the cubic spline at time t using horner's scheme. More...
|
|
bool | isApprox (const polynomial_t &other, const Numeric prec=Eigen::NumTraits< Numeric >::dummy_precision()) const |
| isApprox check if other and *this are approximately equals. More...
|
|
virtual bool | isApprox (const curve_abc_t *other, const Numeric prec=Eigen::NumTraits< Numeric >::dummy_precision()) const |
|
virtual bool | operator== (const polynomial_t &other) const |
|
virtual bool | operator!= (const polynomial_t &other) const |
|
virtual point_t | derivate (const time_t t, const std::size_t order) const |
| Evaluation of the derivative of order N of spline at time t. More...
|
|
polynomial_t | compute_derivate (const std::size_t order) const |
|
polynomial_t * | compute_derivate_ptr (const std::size_t order) const |
| Compute the derived curve at order N. More...
|
|
Eigen::MatrixXd | coeff () const |
|
point_t | coeffAtDegree (const std::size_t degree) const |
|
virtual std::size_t | dim () const |
| Get dimension of curve. More...
|
|
virtual num_t | min () const |
| Get the minimum time for which the curve is defined. More...
|
|
virtual num_t | max () const |
| Get the maximum time for which the curve is defined. More...
|
|
virtual std::size_t | degree () const |
| Get the degree of the curve. More...
|
|
template<class Archive > |
void | serialize (Archive &ar, const unsigned int version) |
|
curves::polynomial::polynomial |
( |
const Point & |
init, |
|
|
const Point & |
d_init, |
|
|
const Point & |
end, |
|
|
const Point & |
d_end, |
|
|
const time_t |
min, |
|
|
const time_t |
max |
|
) |
| |
|
inline |
Constructor from boundary condition with C1 : create a polynomial that connect exactly init and end and thier first order derivatives(order 3)
- Parameters
-
init | the initial point of the curve |
d_init | the initial value of the derivative of the curve |
end | the final point of the curve |
d_end | the final value of the derivative of the curve |
min | : LOWER bound on interval definition of the spline. |
max | : UPPER bound on interval definition of the spline. |
References coefficients_, degree_, dim_, max(), min(), T_max_, and T_min_.
curves::polynomial::polynomial |
( |
const Point & |
init, |
|
|
const Point & |
d_init, |
|
|
const Point & |
dd_init, |
|
|
const Point & |
end, |
|
|
const Point & |
d_end, |
|
|
const Point & |
dd_end, |
|
|
const time_t |
min, |
|
|
const time_t |
max |
|
) |
| |
|
inline |
Constructor from boundary condition with C2 : create a polynomial that connect exactly init and end and thier first and second order derivatives(order 5)
- Parameters
-
init | the initial point of the curve |
d_init | the initial value of the derivative of the curve |
d_init | the initial value of the second derivative of the curve |
end | the final point of the curve |
d_end | the final value of the derivative of the curve |
d_end | the final value of the second derivative of the curve |
min | : LOWER bound on interval definition of the spline. |
max | : UPPER bound on interval definition of the spline. |
References coefficients_, degree_, dim_, max(), min(), T_max_, and T_min_.
bool curves::polynomial::isApprox |
( |
const polynomial_t & |
other, |
|
|
const Numeric |
prec = Eigen::NumTraits<Numeric>::dummy_precision() |
|
) |
| const |
|
inline |
isApprox check if other and *this are approximately equals.
Only two curves of the same class can be approximately equals, for comparison between different type of curves see isEquivalent
- Parameters
-
other | the other curve to check |
prec | the precision treshold, default Eigen::NumTraits<Numeric>::dummy_precision() |
- Returns
- true is the two curves are approximately equals
References coefficients_, degree(), degree_, dim(), dim_, max(), min(), T_max_, and T_min_.
Referenced by isApprox(), and operator==().