6 #ifndef BEZIER_COM_TRAJ_c0_dc0_ddc0_dc1_c1_H 7 #define BEZIER_COM_TRAJ_c0_dc0_ddc0_dc1_c1_H 12 namespace c0_dc0_ddc0_dc1_c1 {
14 static const ConstraintFlag flag =
35 wp.first = 10.0 * t5 - 20.0 * t4 + 10.0 * t3;
36 wp.second = -1.0 * pi[0] * t5 + 5.0 * pi[0] * t4 - 10.0 * pi[0] * t3 +
37 10.0 * pi[0] * t2 - 5.0 * pi[0] * t + 1.0 * pi[0] +
38 5.0 * pi[1] * t5 - 20.0 * pi[1] * t4 + 30.0 * pi[1] * t3 -
39 20.0 * pi[1] * t2 + 5.0 * pi[1] * t - 10.0 * pi[2] * t5 +
40 30.0 * pi[2] * t4 - 30.0 * pi[2] * t3 + 10.0 * pi[2] * t2 -
41 5.0 * pi[4] * t5 + 5.0 * pi[4] * t4 + 1.0 * pi[5] * t5;
48 double alpha = 1. / (T * T);
52 wp.first = (200.0 * t3 - 240.0 * t2 + 60.0 * t) * alpha;
54 (-20.0 * pi[0] * t3 + 60.0 * pi[0] * t2 - 60.0 * pi[0] * t +
55 20.0 * pi[0] + 100.0 * pi[1] * t3 - 240.0 * pi[1] * t2 +
56 180.0 * pi[1] * t - 40.0 * pi[1] - 200.0 * pi[2] * t3 +
57 360.0 * pi[2] * t2 - 180.0 * pi[2] * t + 20.0 * pi[2] -
58 100.0 * pi[4] * t3 + 60.0 * pi[4] * t2 + 20.0 * pi[5] * t3) *
69 std::vector<point_t> pi;
70 pi.push_back(pData.
c0_);
71 pi.push_back((pData.
dc0_ * T / n) + pData.
c0_);
72 pi.push_back((pData.
ddc0_ * T * T / (n * (n - 1))) +
73 (2. * pData.
dc0_ * T / n) + pData.
c0_);
74 pi.push_back(point_t::Zero());
75 pi.push_back((-pData.
dc1_ * T / n) + pData.
c1_);
76 pi.push_back(pData.
c1_);
82 bezier_wp_t::t_point_t wps;
84 const int DIM_VAR = 3;
86 std::vector<Matrix3> Cpi;
87 for (std::size_t i = 0; i < pi.size(); ++i) {
88 Cpi.push_back(
skew(pi[i]));
92 const double T2 = T * T;
93 const double alpha = 1 / (T2);
97 w0.
second.head<3>() = (20 * pi[0] - 40 * pi[1] + 20 * pi[2]) * alpha;
100 (1.0 * Cg * T2 * pi[0] - 40.0 * Cpi[0] * pi[1] + 20.0 * Cpi[0] * pi[2]) *
104 w1.
first.block<3, 3>(0, 0) = 8.57142857142857 * alpha * Matrix3::Identity();
105 w1.
first.block<3, 3>(3, 0) = 8.57142857142857 * Cpi[0] * alpha;
106 w1.
second.head<3>() = 1.0 *
107 (11.4285714285714 * pi[0] - 14.2857142857143 * pi[1] -
108 5.71428571428572 * pi[2]) *
112 (0.285714285714286 * Cg * T2 * pi[0] +
113 0.714285714285714 * Cg * T2 * pi[1] - 20.0 * Cpi[0] * pi[2] +
114 14.2857142857143 * Cpi[1] * pi[2]) *
118 w2.
first.block<3, 3>(0, 0) = 5.71428571428571 * alpha * Matrix3::Identity();
119 w2.
first.block<3, 3>(3, 0) =
120 1.0 * (-8.57142857142857 * Cpi[0] + 14.2857142857143 * Cpi[1]) * alpha;
121 w2.
second.head<3>() = 1.0 *
122 (5.71428571428571 * pi[0] - 14.2857142857143 * pi[2] +
123 2.85714285714286 * pi[4]) *
127 (0.0476190476190479 * Cg * T2 * pi[0] +
128 0.476190476190476 * Cg * T2 * pi[1] +
129 0.476190476190476 * Cg * T2 * pi[2] + 2.85714285714286 * Cpi[0] * pi[4] -
130 14.2857142857143 * Cpi[1] * pi[2]) *
134 w3.
first.block<3, 3>(0, 0) = -2.85714285714286 * alpha * Matrix3::Identity();
135 w3.
first.block<3, 3>(3, 0) =
137 (0.285714285714286 * Cg * T2 - 14.2857142857143 * Cpi[1] +
138 11.4285714285714 * Cpi[2]) *
140 w3.
second.head<3>() = 1.0 *
141 (2.28571428571429 * pi[0] + 5.71428571428571 * pi[1] -
142 11.4285714285714 * pi[2] + 5.71428571428571 * pi[4] +
143 0.571428571428571 * pi[5]) *
147 (0.142857142857143 * Cg * T2 * pi[1] +
148 0.571428571428571 * Cg * T2 * pi[2] - 2.85714285714286 * Cpi[0] * pi[4] +
149 0.571428571428571 * Cpi[0] * pi[5] + 8.57142857142857 * Cpi[1] * pi[4]) *
153 w4.
first.block<3, 3>(0, 0) = -11.4285714285714 * alpha * Matrix3::Identity();
154 w4.
first.block<3, 3>(3, 0) =
155 1.0 * (0.571428571428571 * Cg * T2 - 11.4285714285714 * Cpi[2]) * alpha;
156 w4.
second.head<3>() = 1.0 *
157 (0.571428571428571 * pi[0] + 5.71428571428571 * pi[1] -
158 2.85714285714286 * pi[2] + 5.71428571428571 * pi[4] +
159 2.28571428571429 * pi[5]) *
163 (0.285714285714286 * Cg * T2 * pi[2] +
164 0.142857142857143 * Cg * T2 * pi[4] -
165 0.571428571428572 * Cpi[0] * pi[5] - 8.57142857142857 * Cpi[1] * pi[4] +
166 2.85714285714286 * Cpi[1] * pi[5] + 14.2857142857143 * Cpi[2] * pi[4]) *
170 w5.
first.block<3, 3>(0, 0) = -14.2857142857143 * alpha * Matrix3::Identity();
171 w5.
first.block<3, 3>(3, 0) =
172 1.0 * (0.476190476190476 * Cg * T2 - 14.2857142857143 * Cpi[4]) * alpha;
173 w5.
second.head<3>() = 1.0 *
174 (2.85714285714286 * pi[1] + 5.71428571428571 * pi[2] +
175 5.71428571428571 * pi[5]) *
179 (0.476190476190476 * Cg * T2 * pi[4] +
180 0.0476190476190476 * Cg * T2 * pi[5] -
181 2.85714285714286 * Cpi[1] * pi[5] - 14.2857142857143 * Cpi[2] * pi[4] +
182 8.57142857142857 * Cpi[2] * pi[5]) *
186 w6.
first.block<3, 3>(0, 0) = -5.71428571428572 * alpha * Matrix3::Identity();
187 w6.
first.block<3, 3>(3, 0) =
188 1.0 * (14.2857142857143 * Cpi[4] - 20.0 * Cpi[5]) * alpha;
189 w6.
second.head<3>() = 1.0 *
190 (8.57142857142857 * pi[2] - 14.2857142857143 * pi[4] +
191 11.4285714285714 * pi[5]) *
193 w6.
second.tail<3>() = 1.0 *
194 (0.714285714285714 * Cg * T2 * pi[4] +
195 0.285714285714286 * Cg * T2 * pi[5] -
196 8.57142857142858 * Cpi[2] * pi[5]) *
200 w7.
first.block<3, 3>(0, 0) = 20 * alpha * Matrix3::Identity();
201 w7.
first.block<3, 3>(3, 0) = 1.0 * (20.0 * Cpi[5]) * alpha;
202 w7.
second.head<3>() = (-40 * pi[4] + 20 * pi[5]) * alpha;
204 1.0 * (1.0 * Cg * T2 * pi[5] + 40.0 * Cpi[4] * pi[5]) * alpha;
214 v.second = (-5.0 * pi[4] + 5.0 * pi[5]) / T;
coefs_t computeFinalVelocityPoint(const ProblemData &pData, double T)
Definition: waypoints_c0_dc0_ddc0_dc1_c1.hh:209
coefs_t evaluateCurveAtTime(const std::vector< point_t > &pi, double t)
evaluateCurveAtTime compute the expression of the point on the curve at t, defined by the waypoint pi...
Definition: waypoints_c0_dc0_ddc0_dc1_c1.hh:28
point_t ddc0_
Definition: data.hh:107
waypoint6_t w2(point_t_tC p0, point_t_tC p1, point_t_tC g, const Matrix3 &, const Matrix3 &, const Matrix3 &gX, const double alpha)
Definition: solve_0_step.cpp:34
centroidal_dynamics::Vector3 Vector3
Definition: definitions.hh:22
waypoint6_t w1(point_t_tC p0, point_t_tC p1, point_t_tC, const Matrix3 &, const Matrix3 &, const Matrix3 &gX, const double alpha)
Definition: solve_0_step.cpp:23
VectorX second
Definition: utils.hh:27
waypoint6_t w3(point_t_tC p0, point_t_tC p1, point_t_tC g, const Matrix3 &, const Matrix3 &, const Matrix3 &, const double alpha)
Definition: solve_0_step.cpp:45
INIT_VEL
Definition: flags.hh:21
waypoint6_t w4(point_t_tC, point_t_tC p1, point_t_tC g, const Matrix3 &, const Matrix3 &, const Matrix3 &, const double alpha)
Definition: solve_0_step.cpp:56
point_t c0_
Definition: data.hh:107
MatrixXX first
Definition: utils.hh:26
END_POS
Definition: flags.hh:23
point_t dc1_
Definition: data.hh:107
std::pair< double, point3_t > coefs_t
Definition: definitions.hh:62
INIT_ACC
Definition: flags.hh:22
point_t dc0_
Definition: data.hh:107
waypoint6_t w0(point_t_tC p0, point_t_tC p1, point_t_tC g, const Matrix3 &p0X, const Matrix3 &, const Matrix3 &, const double alpha)
Definition: solve_0_step.cpp:12
bezier_wp_t::t_point_t computeWwaypoints(const ProblemData &pData, double T)
Definition: waypoints_c0_dc0_ddc0_dc1_c1.hh:80
coefs_t evaluateAccelerationCurveAtTime(const std::vector< point_t > &pi, double T, double t)
Definition: waypoints_c0_dc0_ddc0_dc1_c1.hh:45
END_VEL
Definition: flags.hh:24
Eigen::Matrix< value_type, 3, 3 > Matrix3
Definition: definitions.hh:17
Defines all the inputs of the problem: Initial and terminal constraints, as well as selected cost fun...
Definition: data.hh:92
Definition: common_solve_methods.hh:15
INIT_POS
Definition: flags.hh:20
std::vector< point_t > computeConstantWaypoints(const ProblemData &pData, double T)
Definition: waypoints_c0_dc0_ddc0_dc1_c1.hh:63
BEZIER_COM_TRAJ_DLLAPI Matrix3 skew(point_t_tC x)
skew symmetric matrix
Definition: utils.cpp:62
std::vector< ContactData > contacts_
Definition: data.hh:106
point_t c1_
Definition: data.hh:107
const int DIM_POINT
Definition: solve_end_effector.hh:15