9 #ifndef CROCODDYL_MULTIBODY_STATES_MULTIBODY_HPP_ 10 #define CROCODDYL_MULTIBODY_STATES_MULTIBODY_HPP_ 11 #include "crocoddyl/multibody/fwd.hpp" 12 #include "crocoddyl/core/state-base.hpp" 13 #include <pinocchio/multibody/model.hpp> 17 template <
typename _Scalar>
18 class StateMultibodyTpl :
public StateAbstractTpl<_Scalar> {
20 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
22 typedef _Scalar Scalar;
23 typedef MathBaseTpl<Scalar> MathBase;
24 typedef StateAbstractTpl<Scalar> Base;
25 typedef typename MathBase::VectorXs VectorXs;
26 typedef typename MathBase::MatrixXs MatrixXs;
28 enum JointType { FreeFlyer = 0, Spherical, Simple };
30 explicit StateMultibodyTpl(boost::shared_ptr<pinocchio::ModelTpl<Scalar> > model);
31 virtual ~StateMultibodyTpl();
33 virtual VectorXs
zero()
const;
34 virtual VectorXs
rand()
const;
35 virtual void diff(
const Eigen::Ref<const VectorXs>& x0,
const Eigen::Ref<const VectorXs>& x1,
36 Eigen::Ref<VectorXs> dxout)
const;
37 virtual void integrate(
const Eigen::Ref<const VectorXs>& x,
const Eigen::Ref<const VectorXs>& dx,
38 Eigen::Ref<VectorXs> xout)
const;
39 virtual void Jdiff(
const Eigen::Ref<const VectorXs>&,
const Eigen::Ref<const VectorXs>&, Eigen::Ref<MatrixXs> Jfirst,
40 Eigen::Ref<MatrixXs> Jsecond,
const Jcomponent firstsecond = both)
const;
42 virtual void Jintegrate(
const Eigen::Ref<const VectorXs>& x,
const Eigen::Ref<const VectorXs>& dx,
43 Eigen::Ref<MatrixXs> Jfirst, Eigen::Ref<MatrixXs> Jsecond,
44 const Jcomponent firstsecond = both,
const AssignmentOp = setto)
const;
45 virtual void JintegrateTransport(
const Eigen::Ref<const VectorXs>& x,
const Eigen::Ref<const VectorXs>& dx,
46 Eigen::Ref<MatrixXs> Jin,
const Jcomponent firstsecond)
const;
48 const boost::shared_ptr<pinocchio::ModelTpl<Scalar> >& get_pinocchio()
const;
60 boost::shared_ptr<pinocchio::ModelTpl<Scalar> > pinocchio_;
62 JointType joint_type_;
70 #include "crocoddyl/multibody/states/multibody.hxx" 72 #endif // CROCODDYL_MULTIBODY_STATES_MULTIBODY_HPP_ VectorXs lb_
Lower state limits.
VectorXs ub_
Upper state limits.
virtual VectorXs zero() const
Generate a zero reference state.
bool has_limits_
Indicates whether any of the state limits is finite.
std::size_t nx_
State dimension.
virtual void Jdiff(const Eigen::Ref< const VectorXs > &, const Eigen::Ref< const VectorXs > &, Eigen::Ref< MatrixXs > Jfirst, Eigen::Ref< MatrixXs > Jsecond, const Jcomponent firstsecond=both) const
Compute the Jacobian of the state manifold differentiation.
std::size_t nv_
Velocity dimension.
virtual void JintegrateTransport(const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &dx, Eigen::Ref< MatrixXs > Jin, const Jcomponent firstsecond) const
Parallel transport from x + dx to x.
virtual void diff(const Eigen::Ref< const VectorXs > &x0, const Eigen::Ref< const VectorXs > &x1, Eigen::Ref< VectorXs > dxout) const
Compute the state manifold differentiation.
std::size_t ndx_
State rate dimension.
virtual VectorXs rand() const
Generate a random reference state.
std::size_t nq_
Configuration dimension.
virtual void integrate(const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &dx, Eigen::Ref< VectorXs > xout) const
Compute the state manifold integration.
virtual void Jintegrate(const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &dx, Eigen::Ref< MatrixXs > Jfirst, Eigen::Ref< MatrixXs > Jsecond, const Jcomponent firstsecond=both, const AssignmentOp=setto) const
Compute the Jacobian of the state manifold integration.