9 #ifndef _CLASS_LINEAR_VARIABLE 10 #define _CLASS_LINEAR_VARIABLE 14 #include "serialization/archive.hpp" 15 #include "serialization/eigen-matrix.hpp" 25 template <
typename Numeric =
double,
bool Safe = true>
26 struct linear_variable :
public serialization::Serializable {
27 typedef Eigen::Matrix<Numeric, Eigen::Dynamic, 1>
vector_x_t;
28 typedef Eigen::Matrix<Numeric, Eigen::Dynamic, Eigen::Dynamic>
matrix_x_t;
44 vector_x_t
operator()(
const Eigen::Ref<const vector_x_t>& val)
const {
46 if (Safe &&
B().cols() != val.rows())
47 throw std::length_error(
"Cannot evaluate linear variable, variable value does not have the correct dimension");
48 return B() * val +
c();
55 linear_variable_t&
operator+=(
const linear_variable_t& w1) {
63 if (Safe &&
B().rows() != w1.
B().rows())
64 throw std::length_error(
"Cannot add linear variables, variables do not have the same dimension");
65 else if (
B().cols() > w1.
B().cols()){
66 B_.block(0,
B().cols() - w1.
B().cols(),
B().rows(),w1.
B().cols()) += w1.
B();
67 c_.tail(w1.
c().rows()) += w1.
c();
69 else if (
B().cols() < w1.
B().cols()){
70 linear_variable_t opp = w1 + (*this);
86 linear_variable_t&
operator-=(
const linear_variable_t& w1) {
94 if (Safe &&
B().rows() != w1.
B().rows())
95 throw std::length_error(
"Cannot add linear variables, variables do not have the same dimension");
96 else if (
B().cols() > w1.
B().cols()){
97 B_.block(0,
B().cols() - w1.
B().cols(),
B().rows(),w1.
B().cols()) -= w1.
B();
98 c_.tail(w1.
c().rows()) -= w1.
c();
100 else if (
B().cols() < w1.
B().cols()){
101 linear_variable_t opp = -w1 + (*this);
139 linear_variable_t
cross(
const linear_variable_t& other)
const {
141 throw std::invalid_argument(
"Can't perform cross product on linear variables with dimensions != 3 ");
143 throw std::invalid_argument(
"Can't perform cross product on linear variables more than one unknown ");
146 if ((
B().squaredNorm() -
B().diagonal().squaredNorm() > MARGIN ) || (other.
B().squaredNorm() - other.
B().diagonal().squaredNorm() > MARGIN ) )
147 throw std::invalid_argument(
"Can't perform cross product on linear variables if B is not diagonal ");
150 skew<typename linear_variable_t::matrix_3_t, typename linear_variable_t::vector_3_t>(
c()) * other.
B();
159 static linear_variable_t
Zero(
size_t dim = 0) {
167 static linear_variable_t
X(
size_t dim = 0) {
175 std::size_t
size()
const {
return zero ? 0 : std::max(B_.rows(), c_.size()); }
186 const double prec = Eigen::NumTraits<Numeric>::dummy_precision())
const {
187 return (*
this - other).norm() < prec;
190 const matrix_x_t&
B()
const {
return B_; }
191 const vector_x_t&
c()
const {
return c_; }
197 template <
class Archive>
198 void serialize(Archive& ar,
const unsigned int version) {
202 ar& boost::serialization::make_nvp(
"B_", B_);
203 ar& boost::serialization::make_nvp(
"c_", c_);
204 ar& boost::serialization::make_nvp(
"zero", zero);
213 template <
typename N,
bool S>
219 template <
typename N,
bool S>
225 template <
typename N,
bool S>
230 template <
typename N,
bool S>
236 template <
typename N,
bool S>
242 template <
typename N,
bool S>
248 template <
typename BezierFixed,
typename BezierLinear,
typename X>
250 typename BezierFixed::t_point_t fixed_wps;
251 for (
typename BezierLinear::cit_point_t cit = bIn.waypoints().begin(); cit != bIn.waypoints().end(); ++cit)
252 fixed_wps.push_back(cit->operator()(x));
253 return BezierFixed(fixed_wps.begin(), fixed_wps.end(), bIn.T_min_, bIn.T_max_);
256 template <
typename N,
bool S>
257 std::ostream &operator<<(std::ostream &os, const linear_variable<N, S>& l) {
258 return os <<
"linear_variable: \n \t B:\n"<< l.B() <<
"\t c: \n" << l.c().transpose();
263 DEFINE_CLASS_TEMPLATE_VERSION(SINGLE_ARG(
typename Numeric,
bool Safe),
265 #endif //_CLASS_LINEAR_VARIABLE std::size_t size() const
Get dimension of linear variable.
Definition: linear_variable.h:175
Definition: bernstein.h:20
linear_variable(const vector_x_t &c)
Definition: linear_variable.h:34
linear_variable(const matrix_x_t &B, const vector_x_t &c)
Definition: linear_variable.h:35
const matrix_x_t & B() const
Definition: linear_variable.h:190
Eigen::Vector3d cross(const Eigen::VectorXd &a, const Eigen::VectorXd &b)
Definition: cross_implementation.h:15
static linear_variable_t X(size_t dim=0)
Get a linear variable equal to the variable.
Definition: linear_variable.h:167
bool isZero() const
Definition: linear_variable.h:192
Eigen::Matrix< Numeric, 3, 1 > vector_3_t
Definition: linear_variable.h:29
BezierFixed evaluateLinear(const BezierLinear &bIn, const X x)
Definition: linear_variable.h:249
interface for a Curve of arbitrary dimension.
linear_variable_t & operator+=(const linear_variable_t &w1)
Add another linear variable.
Definition: linear_variable.h:55
bezier_curve< T, N, S, P > operator-(const bezier_curve< T, N, S, P > &p1)
Definition: bezier_curve.h:677
bool isApprox(const linear_variable_t &other, const double prec=Eigen::NumTraits< Numeric >::dummy_precision()) const
Check if actual linear variable and other are approximately equal given a precision treshold...
Definition: linear_variable.h:185
Numeric norm() const
Get norm of linear variable (Norm of B plus norm of C).
Definition: linear_variable.h:179
static linear_variable_t Zero(size_t dim=0)
Get a linear variable equal to zero.
Definition: linear_variable.h:159
class allowing to create a Bezier curve of dimension 1 <= n <= 3.
const vector_x_t & c() const
Definition: linear_variable.h:191
linear_variable_t & operator*=(const double d)
Multiply by a constant : p_i / d = B_i*x*d + c_i*d.
Definition: linear_variable.h:127
void serialize(Archive &ar, const unsigned int version)
Definition: linear_variable.h:198
vector_x_t operator()(const Eigen::Ref< const vector_x_t > &val) const
Linear evaluation for vector x.
Definition: linear_variable.h:44
friend class boost::serialization::access
Definition: linear_variable.h:195
Eigen::Matrix< Numeric, 3, 3 > matrix_3_t
Definition: linear_variable.h:30
linear_variable_t & operator-=(const linear_variable_t &w1)
Substract another linear variable.
Definition: linear_variable.h:86
linear_variable_t & operator/=(const double d)
Divide by a constant : p_i / d = B_i*x/d + c_i/d.
Definition: linear_variable.h:117
linear_variable(const linear_variable_t &other)
Definition: linear_variable.h:36
linear_variable()
Definition: linear_variable.h:33
double Numeric
Definition: effector_spline.h:26
linear_variable_t cross(const linear_variable_t &other) const
Compute the cross product of the current linear_variable and the other. This method of course only ma...
Definition: linear_variable.h:139
Eigen::Matrix< Numeric, Eigen::Dynamic, Eigen::Dynamic > matrix_x_t
Definition: linear_variable.h:28
bezier_curve< T, N, S, P > operator/(const bezier_curve< T, N, S, P > &p1, const double k)
Definition: bezier_curve.h:719
bezier_curve< T, N, S, P > operator*(const bezier_curve< T, N, S, P > &p1, const double k)
Definition: bezier_curve.h:725
linear_variable< Numeric > linear_variable_t
Definition: linear_variable.h:31
~linear_variable()
Definition: linear_variable.h:38
Eigen::Matrix< Numeric, Eigen::Dynamic, 1 > vector_x_t
Definition: linear_variable.h:27
bezier_curve< T, N, S, P > operator+(const bezier_curve< T, N, S, P > &p1, const bezier_curve< T, N, S, P > &p2)
Definition: bezier_curve.h:671