#include <ndcurves/fwd.h>
◆ linear_variable_t
template<typename Numeric = double, bool Safe = true>
◆ matrix_3_t
template<typename Numeric = double, bool Safe = true>
◆ matrix_x_t
template<typename Numeric = double, bool Safe = true>
◆ vector_3_t
template<typename Numeric = double, bool Safe = true>
◆ vector_x_t
template<typename Numeric = double, bool Safe = true>
◆ linear_variable() [1/4]
template<typename Numeric = double, bool Safe = true>
◆ linear_variable() [2/4]
template<typename Numeric = double, bool Safe = true>
◆ linear_variable() [3/4]
template<typename Numeric = double, bool Safe = true>
◆ linear_variable() [4/4]
template<typename Numeric = double, bool Safe = true>
◆ ~linear_variable()
template<typename Numeric = double, bool Safe = true>
◆ B()
template<typename Numeric = double, bool Safe = true>
◆ c()
template<typename Numeric = double, bool Safe = true>
◆ cross()
template<typename Numeric = double, bool Safe = true>
Compute the cross product of the current linear_variable and the other. This method of course only makes sense for dimension 3 curves and dimension 3 unknown, since otherwise the result is non-linear. It assumes that a method point_t cross(const point_t&, const point_t&) has been defined.
- Parameters
-
pOther | other polynomial to compute the cross product with. |
- Returns
- a new polynomial defining the cross product between this and other
◆ isApprox()
template<typename Numeric = double, bool Safe = true>
Check if actual linear variable and other are approximately equal given a precision treshold. Only two curves of the same class can be approximately equal,.
- Parameters
-
prec | : the precision treshold, default Eigen::NumTraits<Numeric>::dummy_precision() |
- Returns
- true if the two linear variables are approximately equal.
◆ isZero()
template<typename Numeric = double, bool Safe = true>
◆ norm()
template<typename Numeric = double, bool Safe = true>
Get norm of linear variable (Norm of B plus norm of C).
- Returns
- Norm of linear variable.
◆ operator()()
template<typename Numeric = double, bool Safe = true>
Linear evaluation for vector x.
- Parameters
-
val | : vector to evaluate the linear variable. |
- Returns
- Evaluation of linear variable for vector x.
◆ operator*=()
template<typename Numeric = double, bool Safe = true>
Multiply by a constant : p_i / d = B_i*x*d + c_i*d.
- Parameters
-
- Returns
- Linear variable after operation.
◆ operator+=()
template<typename Numeric = double, bool Safe = true>
Add another linear variable.
- Parameters
-
w1 | : linear variable to add. |
- Returns
- Linear variable after operation.
◆ operator-=()
template<typename Numeric = double, bool Safe = true>
Substract another linear variable.
- Parameters
-
w1 | : linear variable to substract. |
- Returns
- Linear variable after operation.
◆ operator/=()
template<typename Numeric = double, bool Safe = true>
Divide by a constant : p_i / d = B_i*x/d + c_i/d.
- Parameters
-
- Returns
- Linear variable after operation.
◆ serialize()
template<typename Numeric = double, bool Safe = true>
template<class Archive >
◆ size()
template<typename Numeric = double, bool Safe = true>
Get dimension of linear variable.
- Returns
- Dimension of linear variable.
◆ X()
template<typename Numeric = double, bool Safe = true>
Get a linear variable equal to the variable.
- Parameters
-
dim | : Dimension of linear variable. |
- Returns
- Linear variable equal to the variable.
◆ Zero()
template<typename Numeric = double, bool Safe = true>
Get a linear variable equal to zero.
- Parameters
-
dim | : Dimension of linear variable. |
- Returns
- Linear variable equal to zero.
◆ boost::serialization::access
template<typename Numeric = double, bool Safe = true>
friend class boost::serialization::access |
|
friend |
The documentation for this struct was generated from the following files: