The rigid transform aMb can be seen in two ways: More...
#include <gepetto/viewer/corba/se3.hh>
Public Types | |
enum | { Options = _Options } |
enum | { LINEAR = 0, ANGULAR = 3 } |
typedef _Scalar | Scalar |
typedef Eigen::Matrix< Scalar, 3, 1, Options > | Vector3 |
typedef Eigen::Matrix< Scalar, 4, 1, Options > | Vector4 |
typedef Eigen::Matrix< Scalar, 3, 3, Options > | Matrix3 |
typedef Eigen::Matrix< Scalar, 6, 1, Options > | Vector6 |
typedef Eigen::Matrix< Scalar, 4, 4, Options > | Matrix4 |
typedef Eigen::Matrix< Scalar, 6, 6, Options > | Matrix6 |
typedef Eigen::Quaternion< Scalar, Options > | Quaternion |
Public Member Functions | |
SE3Tpl () | |
template<typename M3 , typename v3 > | |
SE3Tpl (const Eigen::MatrixBase< M3 > &R, const Eigen::MatrixBase< v3 > &p) | |
SE3Tpl (int) | |
template<typename S2 , int O2> | |
SE3Tpl (const SE3Tpl< S2, O2 > clone) | |
template<typename S2 , int O2> | |
SE3Tpl & | operator= (const SE3Tpl< S2, O2 > &other) |
const Matrix3 & | rotation () const |
const Vector3 & | translation () const |
Matrix3 & | rotation () |
Vector3 & | translation () |
void | rotation (const Matrix3 &R) |
void | translation (const Vector3 &p) |
Eigen::Matrix< Scalar, 4, 4, Options > | toHomogeneousMatrix () const |
Matrix6 | toActionMatrix () const |
Vb.toVector() = bXa.toMatrix() * Va.toVector() More... | |
SE3Tpl | inverse () const |
aXb = bXa.inverse() More... | |
void | disp (std::ostream &os) const |
template<typename D > | |
internal::ActionReturn< D >::Type | act (const D &d) const |
ay = aXb.act(by) More... | |
template<typename D > | |
internal::ActionReturn< D >::Type | actInv (const D &d) const |
by = aXb.actInv(ay) More... | |
Vector3 | act (const Vector3 &p) const |
Vector3 | actInv (const Vector3 &p) const |
SE3Tpl | act (const SE3Tpl &m2) const |
SE3Tpl | actInv (const SE3Tpl &m2) const |
operator Matrix4 () const | |
operator Matrix6 () const | |
SE3Tpl | operator* (const SE3Tpl &m2) const |
Static Public Member Functions | |
static SE3Tpl | Identity () |
static SE3Tpl | Random () |
Friends | |
std::ostream & | operator<< (std::ostream &os, const SE3Tpl &X) |
The rigid transform aMb can be seen in two ways:
typedef Eigen::Matrix<Scalar,3,3,Options> se3::SE3Tpl< _Scalar, _Options >::Matrix3 |
typedef Eigen::Matrix<Scalar,4,4,Options> se3::SE3Tpl< _Scalar, _Options >::Matrix4 |
typedef Eigen::Matrix<Scalar,6,6,Options> se3::SE3Tpl< _Scalar, _Options >::Matrix6 |
typedef Eigen::Quaternion<Scalar,Options> se3::SE3Tpl< _Scalar, _Options >::Quaternion |
typedef _Scalar se3::SE3Tpl< _Scalar, _Options >::Scalar |
typedef Eigen::Matrix<Scalar,3,1,Options> se3::SE3Tpl< _Scalar, _Options >::Vector3 |
typedef Eigen::Matrix<Scalar,4,1,Options> se3::SE3Tpl< _Scalar, _Options >::Vector4 |
typedef Eigen::Matrix<Scalar,6,1,Options> se3::SE3Tpl< _Scalar, _Options >::Vector6 |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
ay = aXb.act(by)
|
inline |
|
inline |
|
inline |
by = aXb.actInv(ay)
|
inline |
|
inline |
|
inline |
|
inlinestatic |
|
inline |
aXb = bXa.inverse()
|
inline |
|
inline |
|
inline |
|
inline |
|
inlinestatic |
|
inline |
Referenced by se3::SE3Tpl< _Scalar, _Options >::operator=().
|
inline |
|
inline |
|
inline |
Vb.toVector() = bXa.toMatrix() * Va.toVector()
|
inline |
|
inline |
Referenced by se3::SE3Tpl< _Scalar, _Options >::operator=().
|
inline |
|
inline |
|
friend |