
OPRS Development Environment

Version 1.1b14

Félix Ingrand
felix@laas.fr

https://git.openrobots.org/projects/openprs

May 5, 2025

https://git.openrobots.org/projects/openprs

Copyright c© 1991-2022 Franois Flix Ingrand, LAAS/CNRS.
This is version 1.1b14 of the OPRS Development Environment info documen-
tation.
c© 1991-2022 Franois Flix Ingrand, LAAS/CNRS.

All rights reserved.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
The marks used in this document are trademarks of their respective owner.

Contents

I Licensing Information 1

II Overview 5
0.1 What is Procedural Reasoning? 7
0.2 Overall Description of OPRS . 8
0.3 Example of Procedure/OP in OPRS 9
0.4 The OPRS Development Environment 11
0.5 The OPRS Application Environment 13
0.6 The Structure of this Manual . 14

III OPRS Kernel 17

1 How to Use the OPRS Kernel 21
1.1 How to Start a OPRS Kernel . 21
1.2 Arguments to the oprs Command 22
1.3 OPRS Kernel Environment Variables 24
1.4 How to Kill an OPRS Kernel . 25
1.5 OPRS Kernel over Network . 25
1.6 How to Connect to an OPRS Kernel 26

2 OPRS Kernel Commands 29
2.1 OPRS Kernel Parser . 29
2.2 OPRS Kernel Database Commands 30
2.3 OPRS Kernel OP Library Commands 31
2.4 OPRS Kernel Loading Commands 32
2.5 OPRS Kernel Trace Commands 33
2.6 OPRS Kernel Run Option Commands 34
2.7 OPRS Kernel Meta Level Option Commands 35
2.8 OPRS Kernel Compiler/Parser Option Commands 36
2.9 OPRS Kernel Declaration Commands 37
2.10 OPRS Kernel Listing Commands 38
2.11 OPRS Kernel Dumping/Loading Commands 39
2.12 OPRS Kernel Status and Control Commands 41

i

ii CONTENTS

2.13 OPRS Kernel Miscellaneous Commands 42

2.14 Include File Format . 43

3 Syntax and Semantics. . . 45

3.1 Variables . 45

3.1.1 Logical Variables . 46

3.1.2 Program Variables . 46

3.1.3 Global Variables . 47

3.2 Terms . 47

3.2.1 Integer as a Term . 47

3.2.2 Long long integer as a Term 47

3.2.3 Float as a Term . 48

3.2.4 String as a Term . 48

3.2.5 Symbol as a Term . 48

3.2.6 Variable as a Term . 48

3.2.7 Variable List as a Term 48

3.2.8 Gtexpression as a Term 49

3.2.9 Gexpression as a Term . 49

3.2.10 Composed Term as a Term 49

3.2.11 Lisp List as a Term . 49

3.2.12 User Pointers as a Term 50

3.2.13 Array of Integers as a Term 50

3.2.14 Array of Floats as a Term 50

3.2.15 C List as a Term . 51

3.2.16 Other Objects as Term 51

3.3 Special Symbols . 51

3.4 Frames and Binding Environments 52

3.5 Properties . 52

3.6 General Expressions . 52

3.7 General Temporal Expressions 53

3.7.1 Achieve Operator . 53

3.7.2 Test Operator . 54

3.7.3 Wait Operator . 54

3.7.4 Passive Preserve Operator 55

3.7.5 Active Preserve Operator 55

3.7.6 Assert/Conclude Operator 56

3.7.7 Retract Operator . 56

3.8 General Meta Expressions . 56

3.8.1 FACT Meta Expressions 56

3.8.2 GOAL Meta Expressions 57

3.9 Facts . 57

3.10 Messages . 57

3.11 Goals . 58

CONTENTS iii

4 OP Syntax and Semantics 59
4.1 OP Applicability Fields . 59

4.1.1 Invocation Part . 60
4.1.2 Context Part . 60
4.1.3 Setting Part . 60

4.2 OP Other Fields . 61
4.2.1 Effects Part . 61
4.2.2 Properties Part . 61
4.2.3 Documentation Part . 61

4.3 Execution Part . 62
4.3.1 Graph OP . 62
4.3.2 New Graph OP Construction 62
4.3.3 Action OPs . 68
4.3.4 Text OPs . 70

4.4 Procedure and Expression Compilation and Parsing 75
4.4.1 Action Checking . 75
4.4.2 Predicate Checking . 75
4.4.3 Function Checking . 76
4.4.4 Symbol Checking . 76

5 Database 77
5.1 Database File Format . 77
5.2 Unification . 78
5.3 Conclude . 79
5.4 Consultation . 79
5.5 Closed World Predicates . 81
5.6 Functional Facts . 84
5.7 Basic Events . 86
5.8 Evaluable Predicates . 87

5.8.1 Predefined Evaluable Predicates 88
5.8.2 How to Define your Own Evaluable Predicates 92

5.9 OP Predicates . 93

6 Evaluable Functions 95
6.1 Predefined Evaluable Functions 95

6.1.1 Arithmetic Evaluable Functions 96
6.1.2 Array Manipulation Evaluable Functions 97
6.1.3 OP Instance Related Evaluable Functions 98
6.1.4 Fact and Goal Related Evaluable Functions 99
6.1.5 Intention Related Evaluable Functions 100
6.1.6 Time Related Evaluable Functions 101
6.1.7 Lisp Evaluable Functions 102
6.1.8 Miscellaneous Evaluable Functions 105
6.1.9 Goal Building Evaluable Functions 107

6.2 How to Define your Own Evaluable Functions 107

iv CONTENTS

7 Procedure Execution and Run Time 109
7.1 Run Time . 109
7.2 Intention Graph . 109
7.3 Multi Threads Execution . 112
7.4 OPRS Kernel Main Loop . 113
7.5 OP Applicability . 114
7.6 Intending OP . 114
7.7 Using Action OPs . 114

7.7.1 Predefined Actions . 115
7.7.2 How to Define your Own Actions 122

7.8 Graph OP Traversal . 124
7.9 Goal Commitment . 124
7.10 Message Passing . 125

8 Parallel Execution of OPs in OPRS 127
8.1 Changes in the OP Representation 127
8.2 New Traces and New Options . 129
8.3 Performance Considerations . 130

9 Meta Level Reasoning 131
9.1 SOAK and other Meta Facts . 131
9.2 Writing Meta Level OPs . 132
9.3 Other Aspects of the Meta Level 133

10 Advanced Features 135
10.1 OP Properties . 135
10.2 User Hooks . 135
10.3 User Code Error Handler . 136
10.4 Intention Graph Scheduling . 138
10.5 Intention Graph Sorting Predicate 139
10.6 Intending Goals Directly . 140
10.7 Current and Quote . 141
10.8 Critical Section . 142
10.9 Universal Quantification of Variables 142
10.10User Pointers . 142
10.11Action Slicing . 143

IV OPRS-Server 145

11 How to Use the OPRS-Server 149
11.1 Arguments of the OPRS-Server 149
11.2 OPRS-Server Environment Variables 150
11.3 Commands of the OPRS-Server 150

11.3.1 OPRS-Server Commands to Handle OPRS Kernel 150
11.3.2 OPRS-Server Communication Commands 151

CONTENTS v

11.3.3 OPRS-Server Miscellaneous Commands 152

V Message Passer 153

12 How to Use the Message Passer 157
12.1 Argument of the Message Passer 157
12.2 Message Passer Environment Variables 158
12.3 Argument of the Message Passer Killer 158
12.4 Message Passer Killer Environment Variables 159
12.5 How to Connect to the Message Passer from OPRS-Server and

OPRS Kernel . 159
12.6 How to Connect to the Message Passer from an External Module 159
12.7 Messages Format . 161
12.8 Example of C Code to Connect to the Message Passer 162
12.9 Example of Lisp Code to Connect to the Message Passer 165
12.10Errors Reported by the Message Passer 168

VI X-OPRS Kernel 171

13 How to Use the X-OPRS Kernel 175
13.1 X-OPRS Kernel Environment Variables 175
13.2 Windows and Panes of the X-OPRS Kernel 177

13.2.1 Text Pane . 177
13.2.2 Graphic OP Pane . 178
13.2.3 Graphic Intention Pane 178

13.3 Menubar . 179
13.3.1 File Menu . 179
13.3.2 OPRS Menu . 183
13.3.3 Inspect Menu . 187
13.3.4 Trace Menu . 193
13.3.5 Option Menu . 196
13.3.6 Display Menu . 200
13.3.7 X-OPRS Help Menu . 201

13.4 Control and Status Panel . 201
13.4.1 Status Panel . 202
13.4.2 Control Button Menu . 202

VII OP Compiler 203

14 How to Use the OP Compiler 207
14.1 Argument of the OP Compiler 207
14.2 OP Compiler Environment Variables 208
14.3 Using the OP Compiler . 208

vi CONTENTS

14.4 Errors Reported by the OP Compiler 208

VIII OP Editor 209

15 How to Use the OP Editor 213

15.1 Arguments of the OP Editor . 213

15.2 OP Editor Environment Variables 215

15.3 Creating a OP . 216

15.4 Editing an Existing OP . 216

15.5 Scroll Bars . 216

15.6 Selection Pane . 217

15.7 Footer and Dialog Box Help . 217

15.8 Pretty Printing . 217

16 OP Editor Commands 219

16.1 Menubar of the OP Editor . 219

16.1.1 File Menu of the OP Editor 219

16.1.2 Edit Menu of the OP Editor 222

16.1.3 OP Menu . 222

16.1.4 Misc Menu . 230

16.1.5 Mode Menu . 232

16.1.6 OP Editor Help Menu . 233

16.2 Working Menu Items . 233

16.2.1 Move Objects . 234

16.2.2 Create Node . 234

16.2.3 Open Node . 234

16.2.4 Create If Node . 235

16.2.5 Flip Conj/Disj Out . 235

16.2.6 Flip Conj/Disj In . 235

16.2.7 Create Edge . 235

16.2.8 Create Knot . 235

16.2.9 Duplicate Objects . 236

16.2.10 Merge Node . 236

16.2.11 Edit Object . 236

16.2.12 Convert End . 236

16.2.13 Convert Start . 237

16.2.14 Align Object . 237

16.2.15 Align Object Vert . 237

16.2.16 Align Object Hor . 237

16.2.17 Destroy Object . 237

16.2.18 Relevant OP . 237

CONTENTS vii

17 OP File Format 239

17.1 OPF Format . 239

17.2 GGRAPH Format . 239

17.2.1 How to Get Grasper Graph on your Lisp Machine 240

17.2.2 Grasper Graph Incompatibilities 240

17.3 SGRAPH Format . 241

IX Using OPRS 243

18 Introduction to Using OPRS 245

19 Setting Up your Environment 247

20 Getting Started 249

20.1 Getting Started with the OP Editor 249

20.2 Getting Started with the X-OPRS Kernel 250

21 Setting Up an OPRS Application 253

21.1 How Many OPRS Kernels Does it Takes to Screw a Light Bulb? 253

21.2 OPRS Kernels or X-OPRS Kernels 254

21.3 The Database: Facts, Only the Facts 255

21.3.1 The Representation of Facts 255

21.3.2 Which Predicate? . 256

21.3.3 Which Predicates Should be Declared as Closed World
Predicates? . 256

21.3.4 Which Predicate Should be Declared as Functional Facts? 257

21.3.5 Which Predicates Should be Declared as Basic Events? . 257

21.3.6 Forbidden Things and Things to Avoid with the Database 257

21.4 Which OP for Which Task? . 258

21.4.1 Fact Invoked OPs . 258

21.4.2 Goal Invoked OPs . 258

21.4.3 Predefined OPs . 259

21.5 User Defined Evaluable Functions 259

21.6 User Defined Evaluable Predicates 260

21.7 User Defined Actions . 260

21.8 Do You Need Meta Level? . 262

21.9 Intention Graph Manipulation . 262

21.10Data and Commands . 262

21.11Linking C Code in the Kernels 263

21.12Miscellaneous Questions . 264

21.13Common Mistakes . 264

viii CONTENTS

22 Simple OPRS Applications 265
22.1 Factorial Example . 265

22.1.1 Factorial Example OPs 265
22.1.2 Other Factorial Example OPs 267

23 Complex OPRS Applications 269
23.1 Truck Loading Example . 269

23.1.1 Truck Loading Example Presentation 269
23.1.2 How to Install the Truck Loading Demo 271
23.1.3 How to Run the Truck Loading Demo 271
23.1.4 Truck Loading Example OPs 272

24 Applications of OPRS 277

25 Optimizing an OPRS Applications 279
25.1 Optimizing Hashtables . 279
25.2 Just the Right Level of Meta Level 280
25.3 Database Organization . 280
25.4 Slicing your Action . 280

X Appendices 281

A Principal Differences Between C-PRS and OPRS 283

B Principal Differences with SRI PRS 285

C Principal Differences Between Subsequent Versions of C-PRS 289
C.1 Changes Between Version 1.0 and Version 1.1 289
C.2 Changes Between Version 1.1 and Version 1.2 290

C.2.1 Changes in the Commands Syntax of the OPRS Kernel . 290
C.2.2 Miscellaneous Changes Between Version 1.1 and Version

1.2 . 290
C.3 Changes Between Version 1.2 and Version 1.3 293

C.3.1 Miscellaneous Changes Between Version 1.2 and Version
1.3 . 293

C.4 Changes Between Version 1.3 and Version 1.4 297
C.4.1 Main Changes Between Version 1.3 and Version 1.4 297
C.4.2 Miscellaneous Changes Between Version 1.3 and Version

1.4 . 298

D Hardware and Software Dependancies 301
D.1 VxWorks . 301
D.2 C++ Relocatables . 303
D.3 SparcStation . 303
D.4 Windows95-NT . 303

CONTENTS ix

E Commands Equivalence between the OPRS Kernel and the X-
OPRS Kernel 305

F Default OPs 309
F.1 ‘new-default.opf ’ . 309
F.2 ‘meta-intended-goal.opf’ . 325
F.3 ‘new-meta-ops.opf’ . 329
F.4 ‘semaphore.opf’ . 330

G Library and Kernel Functions 333
G.1 Kernel Functions . 333

G.1.1 Data Structures and Types Used 333
G.1.2 Important Variables . 334
G.1.3 Important Constants . 336
G.1.4 Oprs Manipulation Functions 336
G.1.5 Array Manipulation Functions 336
G.1.6 Fact and Goal Manipulation Functions 337
G.1.7 Fact Posting Functions . 338
G.1.8 Intention Manipulation Functions 340
G.1.9 OP Instance Manipulation Functions 341
G.1.10 OP Manipulation Functions 341
G.1.11 Intention Graph Manipulation Functions 342
G.1.12 Allocation Functions . 342
G.1.13 LISP LIST Manipulation Functions 345
G.1.14 Miscellaneous Kernel Functions 345

G.2 Registration and Communication Functions, ‘libmp.a’ 346
G.3 ‘liblist.a’ library . 346

G.3.1 Creating Lists . 346
G.3.2 Destroying Lists . 346
G.3.3 Placing Elements in a List 347
G.3.4 Examining the Elements of a List 348
G.3.5 Removing Elements from Lists 349
G.3.6 Examining the Lists . 349
G.3.7 Applying Functions to Lists 350
G.3.8 Changing the Order of the Elements 352
G.3.9 Marking Current Position in a OPRS LIST 352

H Lisp and Lisp-like Functions 357
H.1 LISP LIST . 357
H.2 Standard Lisp Functions . 358

I Examples 361
I.1 Message Example . 361

I.1.1 Message Example OPs . 361
I.2 Test Examples . 362

I.2.1 Wait OPs . 362

x CONTENTS

I.2.2 LISP LIST manipulation OPs 362
I.2.3 Fibonacci OPs . 362
I.2.4 Parallel Fibonacci OPs . 363

J How to Install the OPRS Development Environment 365
J.1 Description of the Distribution 365
J.2 Installation for Demonstration License 369
J.3 Installation for Binary License 369
J.4 Installation for Source License . 369

K Grammar Used in the OPRS Development Environment 371
K.1 Syntaxic Grammar Used in the OPRS Development Environment 371
K.2 Lexical Grammar Used in the OPRS Development Environment 377

L Xt/Motif Widgets Hierarchy and Resources 381
L.1 Xt Command Line Arguments 383
L.2 X-OPRS Motif Widgets Hierarchy and Resources 383

L.2.1 How to Connect your Own Widget in X-OPRS 383
L.2.2 X-OPRS Resources . 383
L.2.3 X-OPRS Motif Widgets Hierarchy 384

L.3 OP Editor Motif Widgets Hierarchy and Resources 385
L.3.1 OP Editor Resources . 385
L.3.2 OP Editor Motif Widgets Hierarchy 386

M Known Problems and Things to Avoid 387
M.1 Known Problems . 387
M.2 Things to Avoid . 388

N Glossary 389

General Index 393

Command Index 403

Evaluable Function and Action Index 407

Evaluable Predicate Index 411

Kernel Function Index 413

Variable Index 417

Bibliography 422

List of Figures

1 OPRS Global Architecture . 8
2 Example of a OP . 10
3 OPRS Development Environment 12
4 OPRS Application Environment (graphical version) 13
5 OPRS Application Environment (ASCII version) 14

3.1 A OP to Compute Factorial with an Inner Loop and Program
Variables. 46

4.1 Another Example of a OP . 63
4.2 An Example of a OP . 64
4.3 A OP to Compute Factorial Recursively (Old if-then-else Form). 65
4.4 A OP to Compute Factorial Recursively (New if-then-else Form). 66
4.5 A OP to Compute Factorial Iteratively (Old if-then-else Form). . 66
4.6 A OP to Compute Factorial Iteratively (New if-then-else Form). 67
4.7 A OP to compute Fibonacci (without parallelism). 67
4.8 A OP to compute Fibonacci (with parallelism). 68
4.9 A Standard Action OP . 69
4.10 A Special Action OP . 69
4.11 A Multi Variable Special Action OP 70
4.12 Meta Factorial Text OP . 71
4.13 Fibonacci Text OP . 72

7.1 C Procedural Reasoning System main loop 110
7.2 Intention Graph Development . 110
7.3 Intention Graph Development . 110
7.4 A OP with multiple threads. 112

8.1 A OP to compute Fibonacci (without parallelism). 128
8.2 A OP to compute Fibonacci (with parallelism). 128
8.3 A OP with two threads, one monitoring, the other one executing. 129

13.1 X-OPRS Window . 177
13.2 Specific Intention Trace Window 178
13.3 Show Intention Dialog Box . 179

xi

xii LIST OF FIGURES

13.4 X-OPRS Menu Bar . 179
13.5 X-OPRS File Menu . 180
13.6 Reload OP File Dialog List . 181
13.7 Unload OP File Dialog List . 182
13.8 Quit Dialog Box . 183
13.9 X-OPRS Oprs Menu . 184
13.10Add Fact or Goal Prompt Dialog 184
13.11Conclude Database Dialog Box 185
13.12Delete Database Dialog Box . 186
13.13Delete OP Dialog Box . 186
13.14X-OPRS Inspect Menu . 187
13.15Show Database Dialog Box . 188
13.16Show Intentions Dialog Box . 189
13.17Show Conditions Dialog Box . 189
13.18Consult Database Dialog Box . 190
13.19X-OPRS Inspect List Menu . 191
13.20X-OPRS Trace Menu . 193
13.21X-OPRS Trace Dialog Box . 194
13.22OP Graphic List Dialog . 196
13.23X-OPRS Option Menu . 197
13.24X-OPRS Run Option Dialog Box 197
13.25X-OPRS Compiler/Parser Option Dialog Box 198
13.26X-OPRS Meta Level Option Dialog Box 199
13.27X-OPRS Display Menu . 200
13.28X-OPRS Help Menu . 201
13.29The Control and Status Panel . 201

15.1 OP Editor Window . 214
15.2 Selection Pane . 216
15.3 Footer Help Pane . 217

16.1 OP Editor Menu Bar . 219
16.2 OP Editor File Menu . 220
16.3 Load OP File Selection Box . 220
16.4 OP Editor Edit Menu . 222
16.5 OP Editor Op Menu . 223
16.6 Create OP Dialog Box (Graph OP) 224
16.7 Resulting Graph OP . 225
16.8 Create OP Dialog Box (Action OP) 226
16.9 Resulting Action OP . 227
16.10Create OP Dialog Box (Text OP) 228
16.11Resulting Text OP . 229
16.12OP Editor Misc Menu . 230
16.13Change Drawing Size Dialog Box 231
16.14Symbol List Dialog Box . 231
16.15Selected Fields Dialog Box . 232

LIST OF FIGURES xiii

16.16OP Editor Mode Menu . 233
16.17OP Editor Help Menu . 233
16.18OP Editor Working Menu . 234
16.19Create Edge Dialog Box . 235
16.20Edit Object Dialog Box . 236

23.1 Truck Loading Demo . 270

xiv LIST OF FIGURES

List of Tables

C.1 Commands Equivalence Between Version 1.1 and 1.2 291

E.1 Commands Equivalence Between the Kernels (First Part) 306
E.2 Commands Equivalence Between the Kernels (Second Part) . . . 307
E.3 Commands Equivalence Between the Kernels (Third Part) 308

L.1 Xt Application Default Line Arguments and Resources 382

xv

xvi LIST OF TABLES

Part I

Licensing Information

1

3

Copyright (c) 1991-2010 Francois Felix Ingrand.
All rights reserved.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

4

Part II

Overview

5

Overview of the OPRS
Development Environment

The OPRS Development Environment is a set of programs designed to help
users create applications using Procedural Reasoning [IGR92]. The concept of
Procedural Reasoning appeared a few years ago at SRI International in Menlo
Park, California. To date, it has been the subject of many research projects and
numerous publications have been written on this new programming paradigm
(see Bibliography 422).

OPRS Development Environment is, to our knowledge, the first complete
Procedural Reasoning development environment written in C and available un-
der Unix. Its graphical interface is based on MIT’s X Window version 11 (X11),
and Open Software Foundation’s Motif widget set (Motif). It is the first imple-
mentation of OPRS intended as a complete software product and environment,
unlike other previous versions which were research prototypes usually written
in different Lisp dialects.

0.1 What is Procedural Reasoning?

Procedural Reasoning is a set of tools and methods for representing and execut-
ing plans and procedures. These plans or procedures are conditional sequences
of actions which can be run to achieve given goals or to react in particular
situations. Procedural Reasoning differs from other commonly used knowledge
representations (rules, frames, etc.).

To a degree, procedural representation is a trade-off between purely declara-
tive representations and strictly imperative representations. Declarative repre-
sentations suffer from a lack of control on the execution of their rules, imperative
representations suffer from limited modularity. Procedural Reasoning is partic-
ularly well suited for problems where implicit or explicit knowledge is already
formalized as procedures or plans. The control information (i.e. the sequence of
actions and tests) embedded in these procedures or plans is actually preserved.

7

8

Inference
Mechanism

Database
(Facts)

Library of Procedures
(Plans or KAs)

Intention Graph
(Tasks)

Figure 1: OPRS Global Architecture

0.2 Overall Description of OPRS

The C Procedural Reasoning System (OPRS) is a generic architecture for rep-
resenting and reasoning about actions and procedures in a dynamic domain. It
has been applied to various tasks with real-time demands, including malfunc-
tion monitoring for different subsystems of NASA’s space shuttle [GI90b], the
diagnosis, monitoring and control of telecommunications networks [WI91], the
control of mobile robots [Rev92] and system control for a surveillance aircraft
[IGL89].

As shown in Figure 1, the architecture of an OPRS Kernel consists of (1) a
database containing the system of current beliefs about the world; (2) a library
of plans (or procedures), called Knowledge Areas (OPs), that describe particu-
lar sequences of actions and tests that may be performed to achieve given goals
or to react to certain situations; and (3) an intention graph, consisting of a [par-
tially] ordered set of all plans chosen for execution at runtime. An interpreter
(inference mechanism) manipulates these components, selecting an appropriate
plan (OP) based on system beliefs and goals, placing those selected OPs in the
intention structure, and finally executing them.

The OPRS Kernel interacts with its environment through its database, which
acquires new beliefs in response to changes in the environment, and through
the actions it performs as it carries out its intentions. Different instances of
OPRS, running asynchronously, can be used in an application that requires the
cooperation of more than one subsystem.

In OPRS, goals are descriptions of desired tasks or behaviors. In the logic
used by OPRS, the goal to achieve a certain condition C is written as (! C);

0.3. EXAMPLE OF PROCEDURE/OP IN OPRS 9

the test for a condition is written as (? C); to wait until the condition is true
is written as (^ C); to passively maintain C is written as (# C); to actively
maintain C is written as (% C); to assert the condition C is written as (=> C);
and to retract the condition C is written as (~> C). For example, the goal to
close valve v1 could be represented as (! (position v1 cl)), and to test for
it being closed as (? (position v1 cl)).

Knowledge about how to accomplish given goals or to react to certain sit-
uations is represented in OPRS by declarative procedure specifications called
Knowledge Areas (OPs). Each OP consists of a body, which describes the steps
of the procedure, and an invocation condition, which specifies under which sit-
uations the OP is useful. Together, the invocation condition and body of a OP
express a declarative fact about the results and utility of performing certain
sequences of actions under certain conditions [GL86b].

The set of OPs in a OPRS application system not only consists of procedural
knowledge about a specific domain, but also includes meta level OPs — that is,
information about the manipulation of the beliefs, goals, and intentions of OPRS
itself. For example, typical meta level OPs encode various methods for choosing
among multiple applicable OPs. They determine how to achieve a conjunction
or disjunction of goals, and compute the amount of additional reasoning that
can be undertaken, given the real-time constraints of the problem domain. In
achieving this, meta level OPs make use of information about OPs that are
contained in the system database or in the property slots of the OP structures.

OPRS has several features that make it particularly powerful as a situated
reasoning system, including: (1) the semantics of its plan (procedure) repre-
sentation, which is important for verification and maintenance; (2) its ability
to construct and act upon partial (rather than complete) plans; (3) its ability
to pursue goal-directed tasks while at the same time be responsive to chang-
ing patterns of events in bounded time; (4) its facilities for managing multiple
tasks in real-time; (5) its default mechanisms for handling stringent real-time
demands of its environment; and (6) its meta level (or reflective) reasoning ca-
pabilities. Some of these features have been discussed in earlier reports and
papers [GI89a, GI90a, GI90b].

0.3 Example of Procedure/OP in OPRS

The procedure or OP which is presented on Figure 2 belongs to a library of
procedures in the control and supervision of a tank truck filling station. Its
goal is to appropriately close or open the filling valve. To control the proper
execution, it monitors two position sensors placed on the valve. It generates an
emergency stop of the station in case of malfunction.

The points shown on the figure 2 are now presented and developed:

1. The name of the procedure allows the user to designate it in the different
selection menus of the system.

10

Figure 2: Example of a OP

0.4. THE OPRS DEVELOPMENT ENVIRONMENT 11

2. The invocation part specifies which goals or which events may make it
applicable. This particular procedure is applicable whenever the system
has the goal to put the valve in position $X ($X is a variable which can
take two values: “open” or “closed”, which will be known at run-time).

3. The context part further specifies the conditions of applicability of the
procedure. In this case, it will determine the acceptable response delays
on the valve position sensors.

4. The effects part specifies the facts you want to add or retract from the
database upon successful execution of the procedure. Here, if the proce-
dure successfully executes, it will conclude the new position of the valve
in the database.

5. The documentation field is self explanatory.

Then, there is the “procedural” part which specifies the sequence of tests
and actions to evaluate when the procedure is executed.

6. The “START” node is the starting point of the procedure. To successfully
execute a procedure, one must satisfy all the actions and conditions which
lead to an “END” node. This is done by jumping from node to node, while
satisfying the condition which label the edge connecting this two nodes.
For the “Move Valve” procedure, the first action to be done is to put the
“switch” in the proper position: $X. There is only one node “START” in a
procedure.

7. There can be more than one outgoing edge from a specific node. In this
case, the system will try to satisfy one condition after another. As soon
as a condition is satisfied, we can make the transition to node at the head
of the edge (the node at which the edge points).

8. Execution proceeds from node to node until it reaches an “END” node.
When one “END” node is reached, the execution of the procedure is con-
sidered successful. If it was goal invoked, then this goal is considered
achieved. In our case, the valve will indeed be in position $X. If no “END”
node can be reached, then the execution is considered to be failed, and
the goal to be achieved remains to be satisfied.

In a typical OPRS application, one defines a library of such procedures and
OPs. These procedures are then loaded in a OPRS Kernel which will execute
them whenever they are applicable, i.e. when their invocation and context parts
are true.

0.4 The OPRS Development Environment

The OPRS Development Environment is designed to allow the user to implement
applications in control and supervision of complex systems, automatic execution

12

KA Editor

Message Passer

PRS Server

C-PRS X-PRS

KA

SimulatorReal Data

Figure 3: OPRS Development Environment

of predefined procedures, etc. Thanks to its modular architecture, it is easy to
integrate an application developed with OPRS in already existing systems.

The OPRS Development Environment is composed of different programs and
modules:

• A OP Editor, which enables the user to create, edit and modify its appli-
cation procedures.

• A OPRS-Server, which enables the user to asynchronously manage a num-
ber of OPRS Kernels and X-OPRS Kernels.

• A Message Passer, which enables an application and external modules to
communicate with the different kernels of the OPRS application.

• Some OPRS Kernels and X-OPRS Kernels, which execute the procedures
of your application.

0.5. THE OPRS APPLICATION ENVIRONMENT 13

Message Passer

PRS Server

C-PRS X-PRS

SimulatorReal Data

Figure 4: OPRS Application Environment (graphical version)

A OPRS application is organized around a “Message Passer” module and
a “OPRS-Server” module. However, one can run as many OPRS Kernels or
X-OPRS Kernels as required by the application on any machine of the network.

0.5 The OPRS Application Environment

The OPRS Application Environment is designed to run OPRS applications de-
veloped under the OPRS Development Environment. It allows the user to ex-
ecute the procedures exactly as they are executed in the OPRS Development
Environment. However, it does not allow the user to modify or edit the existing
procedures. This environment is particularly well suited for a site using a OPRS
application developed by a third party.

According to the needs of your application, the OPRS Application Environ-
ment exists in two versions:

A graphic version, under X11/Motif, which enables the user to follow the
graphic execution of the procedures and the evolution of the task graph in the
X-OPRS Kernels (Figure 4).

An ASCII version which enables the user to execute the procedures in a
standard Unix environment (Figure 5). This version, functionally identical to
the previous one, does not allow the user to follow the graphical execution of
procedures.

Whatever version is chosen, the licensing mechanism stays the same; the
“Message Passer” and the “OPRS Server” are the central and unique modules

14

Message Passer

PRS Server

C-PRS

SimulatorReal Data

Figure 5: OPRS Application Environment (ASCII version)

around which as many as required by the application, OPRS Kernels or X-OPRS
Kernels are run.

0.6 The Structure of this Manual

This manual is available in hard copy or as an on-line help function that you
can access while using the OPRS Development Environment. The book is a
standard manual, with parts, chapters, sections, appendices, etc. . . The on-line
help is structured in a similar way with each section accessible through a series
of menus or hypertext links. Additionally, the appropriate section of the on-line
manual is directly accessed when you request help from the OPRS Development
Environment. For example, most dialog boxes in the Motif interface have a HELP

button. When you activate any HELP the system will show the appropriate
documentation page from which you can then access any part of the manual.

This manual is organized in eight parts to help you easily find the information
you need. Each part presents one particular program or module of the OPRS
Development Environment. Because of the many interconnections and cross
references between these different parts, the manual is structured to explain
these cross references whenever possible.

Different parts can be read in any order, although the order in which they
are presented is certainly the preferred one. It is suggested that you read a part
describing a module before reading one describing the same module’s X11/Motif

0.6. THE STRUCTURE OF THIS MANUAL 15

interface. For example, one should read the OPRS Kernel part before the X-
OPRS Kernel part.

Overview:

OPRS Kernel: This part introduces the most important modules of the OPRS
Development Environment. The OPRS Kernel is really the central pro-
gram of the OPRS Development Environment. However, it needs the
other modules and programs to be used as a real application. It executes
the procedures produced with the OP Editor. It is created and can be
interacted with, using the OPRS-Server. It can be run under X11/Motif
using the X-OPRS interface. It can communicate with the external world
and other OPRS kernels using the Message Passer. It represents the most
important and biggest part of the present manual.

OPRS-Server: This part introduces the OPRS-Server program which can cre-
ate, kill and allow the user to interact with OPRS Kernels.

Message Passer: This part introduces the module which allows the OPRS
and X-OPRS kernels to communicate with one another and with external
programs.

X-OPRS Kernel: This is the X11/Motif companion of the OPRS Kernel mod-
ule. In this interface, you can graphically trace the procedures which are
executing and follow the various tasks the kernel is working on.

OP Editor: This part describes the program which is used to create, edit and
modify OPs and procedures. It is a graphical editor based on X11/Motif.

Using OPRS: This part describes how to use the OPRS Development Envi-
ronment. A step by step OP Editor session is presented, as well as an
example of how to run an X-OPRS Kernel application. This part also
goes through the process of explaining the various choices you will need
to make to set-up a OPRS application, and gives some example of such
application.

Appendices: The appendices describe various topics about the OPRS Devel-
opment Environment: installation (see [How to Install the OPRS Devel-
opment Environment], §J, page 365), differences from SRI PRS (see [Prin-
cipal Differences with SRI PRS], §B, page 285), default OPs (see [Default
OPs], §F, page 309), the Grammar Used in the OPRS Development En-
vironment (see [Grammar Used in the OPRS Development Environment],
§K, page 371), etc., as well as a glossary, a bibliography and various indices
which point you back to the appropriate sections of the manual.

Some chapters or sections have arbitrarily been put in a particular part,
although they could equally well be presented elsewhere. For example, the OP
syntax section (see [OP Syntax and Semantics], §4, page 59) is part of the OPRS
Kernel part, although it could be in the OP Editor part. In any case, the various

16

indices and cross references will always point you to the proper section when
necessary.

Comments and problems about this documentation should be reported to
the following electronic mail address: �felix@laas.fr or entered in the OpenPRS
issues database: �https://git.openrobots.org/projects/openprs/issues.

Part III

OPRS Kernel

17

Overview of the OPRS
Kernel

The OPRS Kernel is certainly the most important program of the OPRS De-
velopment Environment. It is the program which executes the OPs and the
procedures. It is the core of the OPRS technology. A OPRS Kernel is com-
posed of:

• A database containing the facts loaded in the system,

• A library of plans and procedures describing the conditional sequences
of actions which must be done to achieve specific goals or to react to
particular events,

• A tasks graph composed of a partial order of the plans chosen for execu-
tion.

OPRS is the implementation in C of the OPRS technology. The OPRS main
assets are:

• advanced language for procedural representation,

• possibility of redefining the control algorithm of the main loop in this same
language,

• real-time main loop which guarantees a bound on reaction time,

• possibility of defining or redefining evaluable predicates, evaluable func-
tions and actions to suit your application,

• possibility of tuning the kernel to your application,

• advanced and non-monotonic use of the database,

• each OPRS Kernel is an independent Unix process,

• available under various Unix (Solaris, Ultrix, Sun OS, etc.) and real-time
Unix system (VxWorks),

19

20

• reduced size of the kernel (few hundreds of kilo bytes), compared to Lisp
and systems developed in Lisp.

You can call this program directly from a Unix shell or you can call it directly
from the OPRS-Server when you execute the make command.

The OPRS Kernel is also a “part” of the X-OPRS program. In fact, the
kernel part of X-OPRS is the OPRS Kernel. In one case, the main loop runs
alone; in the other case, it runs interleaved with the Xt Application Main Loop.
Note that if the OPRS Kernel is running alone (not in the Xt Application Main
Loop), then the performances are increased. Any performance study should
be made with the kernel alone (except, of course, if the goal is to evaluate the
performance of the X interface).

Chapter 1

How to Use the OPRS
Kernel

The OPRS can be called directly from the keyboard or, if you prefer, you can
create, kill or modify a OPRS Kernel using commands of the OPRS-Server
(see [Commands of the OPRS-Server], §11.3, page 150, for details). The OPRS
Kernel can be run without being connected to the OPRS-Server but still needs
to be connected to the Message Passer. Connection to the Message Passer is
mandatory, but automatically performed by the kernel. If there is already a
Message Passer running on the specified host/port, then the kernel will connect
to it. Otherwise, it will attempt to start one and then to connect to it.

If you start a OPRS Kernel from the OPRS-Server, connections to the
OPRS-Server are made automatically. However, if you start it from a Unix
shell (on another host for example) then you need to connect it to the OPRS-
Server (unless you specify the -a argument). This is done by issuing the accept
command in the OPRS-Server.

1.1 How to Start a OPRS Kernel

You can start a new OPRS Kernel either by typing the command oprs at the
Unix prompt:

% oprs FOO

This will only work if there is already a OPRS-Server running, or you will
get this error message:
‘‘client: connect: Host is unreachable’’.

If there is a OPRS-Server, you will be reminded to issue the accept command
in the OPRS-Server with the following message:
‘‘Go in the oprs-server, and execute the accept command.’’

or you can start a new OPRS Kernel with the make command of the OPRS-
Server (the make x command start a X-OPRS Kernel instead):

OPRS-Server> make foo

21

22 CHAPTER 1. HOW TO USE THE OPRS KERNEL

Note that if you start OPRS from the Unix shell, you may want to specify
a number of options or arguments, for example, if the OPRS-Server and the
Message Passer don’t use the default socket port for their socket communication,
then you need to specify in the oprs command the port number on which
both programs expect connections. Unless you started the kernel with the -a

argument, you are then required to register this kernel from the OPRS-Server
with the accept command.

Upon start-up, and just before entering the OPRS Kernel main loop, the
kernel will execute the:
start kernel user hook

function (see [User Hooks], §10.2, page 135). This function can be used for
example to initialize some data structures, or to install an intention scheduler
(see [Intention Graph Scheduling], §10.4, page 138). This function is executed
before any loading command specified with the -x argument.

1.2 Arguments to the oprs Command

If a OPRS Kernel is created from the Unix shell, then you can specify a number
of arguments. There is a large number of possible arguments, but most of them
are seldom used.

Usage:

oprs [-s server-hostname] [-i server-port-number] [-a]

[-m message-passer-hostname] [-j message-passer-port-number]

[-x include-filename]* [-c oprs-command]*

[-I size-symbol-hash-table] [-P size-pred-hash-table]

[-D size-database-hash-table] [-F size-function-action-hash-table]

[-d oprs-data-path] [-p] [-l upper|lower|none] [-L en|fr] [-n] client-name

All the arguments are optional except for the name of the OPRS Kernel. It
is preferable to use upper case for the name. In fact, the name is upper casified
automatically, unless it is surrounded by |.

-s to specify the hostname on which the server is running. If the kernel cannot
connect to this hostname on the specified port, then the program exits
with an error message.

-i to specify the port on which the OPRS-Server expects a connection. Do not
forget to issue the accept command in the OPRS-Server.

-a to specify the kernel should runs alone without being connected to the
OPRS-Server. In this case you do not need to issue the accept command
in the OPRS-Server.

-m to specify the hostname on which the Message Passer runs or will be started
(usually the same hostname as the OPRS-Server). If the OPRS Kernel
cannot connect to this hostname on the specified port (even after trying to
start the Message Passer), then the program exits with an error message.

1.2. ARGUMENTS TO THE OPRS COMMAND 23

-j to specify the port on which the Message Passer is expecting a connection
(or will be started if necessary).

-x to specify an include file to load upon start-up. This will save you a connect

in the OPRS-Server, followed by an include and a disconnect in the
OPRS Kernel. Reminder: include files can contain other include direc-
tives. This option can appear more than once, in which case, files are
loaded in the they order are specified.

-c to specify a command to execute upon start-up. This option can appear
more than once, in which case, the commands are executed in the order
they are specified.

-d to specify a data path, i.e. a colon separated list of directories where the
kernel will look for data files (‘.inc’, ‘.opf ’ and ‘.db’) (see [OPRS Kernel
Environment Variables], §1.3, page 24).

-I to specify the size of the symbol hash-table (default size: 1024).

-D to specify the size of the database main hash-table (default size: 1024).

-P to specify the size of the predicates hash-table (default size: 64).

-E to specify the size of the evaluable functions, actions and evaluable predicates
hash-tables (default size: 128).

-F to specify the size of the function/action hash-table (default size: 64).

-p can be used to parse and print the temporal operator in English instead of
the single letter. It will parse and print achieve instead of !, and wait

instead of ^ and so on. The parser understands both syntaxes, but the
printer will output the english form.

-l upper|lower|none can be used to print and parse all the symbol and id
in upper case, lower case or in no particular case. You may specify this
option by setting the OPRS ID CASE environment variable:
Example:

setenv OPRS_ID_CASE none

-L en|fr can be used to select the language of the interface (French or English).
Note that by default your kernel is in English. Note also that for the
applications with an X interface (i.e. X-OPRS Kernel and the OP Editor
the choice of the ‘app-defaults’ file will select the language (see [Xt/Motif
Widgets Hierarchy and Resources], §L, page 381). In this case, selecting
a different value with the option will lead to a warning and to a mix of
language in the interface.

-n can be used to specify the name of the kernel. The -n is only required if the
name is not the last arguments.

24 CHAPTER 1. HOW TO USE THE OPRS KERNEL

1.3 OPRS Kernel Environment Variables

A number of environment variables can be used to customize the OPRS Kernel
or to define default arguments. Arguments passed using the command line have
precedence on those acquired from environment variables.

OPRS DATA PATH is used to specify a data path, i.e. a colon separated list of
directories where the kernel will look for data files (‘.inc’, ‘.opf ’ and ‘.db’).
It is used by the OPRS Kernel and the X-OPRS Kernel. It is equivalent
to the -d command line argument.
Example:

export OPRS_DATA_PATH=./data:/usr/local/share/oprs/data:${HOME}/data

OPRS DOC DIR is used to specify the location of the online OPRS Development
Environment documentation. It is used by the X-OPRS Kernel and the
OP Editor. Example:

export OPRS_DOC_DIR=/usr/local/share/doc/openprs

OPRS MP PORT is used to specify the port on which the Message Passer will listen
to connection. It is used by the OPRS Kernel, the X-OPRS Kernel, the
OPRS-Server and the Message Passer. It is equivalent to the -j command
line argument.
Example:

export OPRS_MP_PORT=3456

If the MP Port is not explicitly set, it defaults to 3300.

OPRS MP HOST is used to specify the host on which the Message Passer will listen
to connection. It is used by the OPRS Kernel, the X-OPRS Kernel, the
Message Passer and the OPRS-Server. It is equivalent to the -m command
line argument.
Example:

export OPRS_MP_HOST=alf.laas.fr

OPRS SERVER PORT is used to specify the port on which the OPRS-Server will
listen to connection. It is used by the OPRS Kernel, the X-OPRS Kernel
and the OPRS-Server. It is equivalent to the -i command line argument.
Example:

export OPRS_SERVER_PORT=3457

1.4. HOW TO KILL AN OPRS KERNEL 25

OPRS SERVER HOST is used to specify the host on which the OPRS-Server will
listen to connection. It is used by the OPRS Kernel and the X-OPRS
Kernel. It is equivalent to the -s command line argument.
Example:

export OPRS_SERVER_HOST=alf.laas.fr

OPRS ID CASE is used to specify if the program should upper case, lower case
or should not change the case of the parsed Id. This is equivalent to the
-l option. The possible values are lower, upper or none:
Example:

export OPRS_ID_CASE=none

The various PORT and HOST environment variables are very useful when
different users are using the OPRS Development Environment on the same host.
By setting these variables to the proper value, they can make sure that their
application will not interact with each other.

1.4 How to Kill an OPRS Kernel

You can kill a OPRS Kernel with the kill command of the OPRS-Server:

OPRS-Server> kill foo

If you kill a OPRS Kernelthat is already dead, you get a warning.

You can also kill a OPRS Kernel with the quit, q or EOF commands. In
this case, you need to be connected to this OPRS and issue the command at
the prompt:

FOO> quit

1.5 OPRS Kernel over Network

All the communications between the various components of the OPRS Devel-
opment Environment are made using Internet sockets. You can easily run an
OPRS Kernel on a machine different from the one on which the OPRS-Server
runs. On machines with notably slow process switching we strongly advise that
you run the OPRS-Server and the Message Passer on a host different from the
one upon which the OPRS Kernel is running. In any case, you can start an
OPRS Kernel from any host, providing you specify the proper arguments to
enable the OPRS Kernel to establish connection with the OPRS-Server and
the Message Passer. Note that you need to issue an accept command in the
OPRS-Server to establish the connection.

26 CHAPTER 1. HOW TO USE THE OPRS KERNEL

1.6 How to Connect to an OPRS Kernel

When you start an OPRS Kernel, it enters its main loop and is in run mode.
In this mode, the kernel checks for messages from the Message Passer and com-
mands from the OPRS-Server, but does not interact directly with the user. If
you want to interact directly with an OPRS Kernel (to consult the database,
or load some OPs, and so on), you can do it using the connect command of
the OPRS-Server. This will put the kernel in command mode. Note: This is
not true for the X-OPRS Kernel with which you can interact using the X/Motif
interface.

For example, assuming you have created an OPRS Kernel named FOO, you
can connect to it by issuing the following command from the OPRS-Server
window.

OPRS-Server> connect foo

If the designated kernel has been started from the server, then the prompt
changes from:

OPRS-Server>

to:
FOO>

in the same window or terminal.
If the designated kernel has been started from a Unix shell, then the new

prompt appears in the window or tty where it was started, and the OPRS-Server
is blocked, waiting until the OPRS Kernel leaves its command mode.

Note that at this point, the user is connected through the keyboard to the
designated OPRS Kernel, and everything typed is in fact interpreted by the
OPRS Kernel. Consequently, the OPRS-Server is now disconnected from the
keyboard and will wait until the OPRS Kernel releases it.

One problem with this scheme is that during this time, the OPRS Kernel is
deaf to the rest of the world. For example, it does not check for messages from
the Message Passer, and it does not even run its top level loop. . . However, the
messages are queued (as much as possible) and the main loop will parse them
upon restart. In any case, the connection to an OPRS Kernel should be used
as seldom as possible and the kernel should then be left alone to run its own
life. Nevertheless its use is not prohibited, and is usually appropriate to load
database, or OPs just after the OPRS Kernel has been started.

To disconnect the user and the keyboard from the OPRS Kernel, the user
can type:

FOO> disconnect

The prompt then becomes:
OPRS-Server>

if the kernel was in the same window, otherwise this prompt appears again
in the window where the OPRS-Server is running.

You can then interact with the OPRS-Server again, and the OPRS Kernel
returns in run mode.

If you happen to break the command parser, you need to reset it. Do this
by typing a dot . at the beginning of a new line, i.e. ‘RET’, ‘.’, and ‘RET’.

1.6. HOW TO CONNECT TO AN OPRS KERNEL 27

See [OPRS Kernel Parser], §2.1, page 29 for more on this subject.
Keep in mind that you do not need to connect to an OPRS Kernel to execute

a command such as loading a database, or an include file. You can perform all of
these from the OPRS-Server using the transmit command (see [OPRS-Server
Communication Commands], §11.3.2, page 151). The main advantage of the
command mode is that the interaction with the user is direct, but the main
advantage of the transmit command of the OPRS-Server is that it does not
stop the OPRS Kernel main loop, it merely slows it down, as the command will
be executed by the main loop itself.

28 CHAPTER 1. HOW TO USE THE OPRS KERNEL

Chapter 2

OPRS Kernel Commands

The OPRS Kernel has a number of commands which can either be executed by
the user (when he is connected to the OPRS Kernel of his choice) or put into
an include file. Most commands have self-explanatory names, however, their
syntax is very rigorous and the command parser will detect any inconsistency.
If you put your command in an include file, keep in mind that it can contain
any command except the connect and disconnect commands.

The OPRS Kernel commands are classified in different categories and are
presented in the following sections. Some commands appear in more than one
category and are presented in each category with the appropriate cross reference.

2.1 OPRS Kernel Parser

The OPRS Kernel uses a parser to parse the user commands (so does the OPRS-
Server and to some extent the OP Editor and the X-OPRS Kernel). If for some
reason the parser gets confused, presumably because of a syntax error, you can
type a dot at the beginning of a new line, followed by a carriage return to reset
it (i.e. ‘RET’, ‘.’, and ‘RET’). In any case, when you reset the parser, you will
get the prompt after a warning.

FOO> echoo (asd)

FOO: warning: syntax error near ECHOO

.

FOO: warning: Parsing error, unknown command, reseting the parser near .

FOO> echo (asd)

(ASD)

FOO>

If you do not get the prompt, it means that the parser is still expecting a
token to parse. (In some very peculiar situations, the parser needs to get a close

29

30 CHAPTER 2. OPRS KERNEL COMMANDS

parenthesis) to accept the reset token \n.\n).

2.2 OPRS Kernel Database Commands

The database commands allow the user to conclude, consult, delete facts, and
modify some properties of the database. These commands are usually used
whenever the user wants to interact directly with the database. However, while
the OPRS Kernel is running, facts will be concluded/deleted/consulted by the
kernel itself.

• delete expression. Delete the expression (see [General Expressions],
§3.6, page 52) from the database. Note that you can delete expressions
containing variables. Variables in this context are universally quantified,
i.e. all the matching expressions will be deleted. Note that you cannot
delete gexpressions containing logical operators.
Example: delete (foo a b $x)

delete (bar 12.0 (+ 4 5))

• consult gexpression. Consult the gexpression (see [General Expres-
sions], §3.6, page 52) in the database. Note that the consult command
accepts a gexpression (i.e. expression combined with logical operators),
not only an expression.
Example: consult (bar $x b c)

consult (& (foo 4 "String") (bar $x b c))

consult (|| (foo $x "String") (bar $x b c))

• conclude expression. Conclude the expression (see [General Expres-
sions], §3.6, page 52) in the database. You cannot conclude an expression
with unbound variables, and you can only conclude expressions, not gex-
pressions.
Example: conclude (bar a b c), and
conclude (~ (foo 2 3 (+ 2 3))), are accepted, however
conclude (bar $x b c) is not allowed because of the variable, nor is
conclude (& (bar boo) (boo bar)) because of the conjunction.

• show db. This command displays all the expressions which are currently
contained in the database. They are not displayed in any particular order,
so it can be rather tedious to look for a particular fact.

• save db ‘file name’ . This command saves the contents of the database
in a the file ‘file name’. It is saved in a format suitable to be read by the
kernel.
Example: save db "my-database.db"

save db "/usr/name/oprs/application.db"

• empty fact db. Empty the database. It clears and frees all the contents
of the database. Functional facts, closed world predicates and basic events
declarations are preserved.

2.3. OPRS KERNEL OP LIBRARY COMMANDS 31

• load db ‘file name’ . Load the content of ‘file name’ in the database.
See [OPRS Kernel Loading Commands], §2.4, page 32 for more informa-
tion on this command.

2.3 OPRS Kernel OP Library Commands

The OP library contains all the OP/procedures which have been loaded in the
OPRS Kernel. There are a number of commands to load/unload OP files in the
OP library of an OPRS Kernel, as well as to clear/consult the OP library, and
to set/unset trace on specific OP or OP files (i.e. set of OPs loaded from the
concerned file).

• delete op op name. Delete the specified OP from the OP library.

• delete opf file name. Delete all the OP which were contained in the
OP File specified as argument.

• show op op name. Print the specified OP from the OP library.

• list op. List all the OPs loaded in the kernel.

• list opfs. List all the OP Files loaded in the kernel.

• trace graphic op op name on|off. Set the graphic trace on or off for
the specified OP.

• trace step op op name on|off. Set the step status on or off for the
specified OP.

• trace text op op name on|off. Set the text trace on or off for the
specified OP.

• trace graphic opf file name on|off. Set the graphic trace on or off
for all the OPs in the specified loaded OP file.

• trace step opf file name on|off. Set the step status on or off for all
the OPs in the specified loaded OP file.

• trace text opf file name on|off. Set the text trace on or off for all
the OPs in the specified loaded OP file.

• load opf ‘file name’ . Load all the OPs contained in the OP File spec-
ified as argument. See [OPRS Kernel Loading Commands], §2.4, page 32
for more information on this command.

• reload opf ‘file name’ . Unload and then load all the OPs contained
in the OP File specified as argument. See [OPRS Kernel Loading Com-
mands], §2.4, page 32 for more information on this command.

32 CHAPTER 2. OPRS KERNEL COMMANDS

• consult relevant op goal|fact. Return the OPs which are relevant
for the goal or the fact given as an argument. Relevant OPs are not appli-
cable. These are just the OPs which may be considered for applicability.

• consult applicable op goal|fact. Return the OPs which are appli-
cable, with their binding environment (see [Frames and Binding Envi-
ronments], §3.4, page 52) for a particular goal or fact. Note that this
applicable OPs will not be executed. . . Therefore this command is not
equivalent to the add command (see below). However, the fact (if a fact is
used for this consultation) is concluded in the database and then retracted
from the database, as if it was a basic event fact (see [Basic Events], §5.7,
page 86).

2.4 OPRS Kernel Loading Commands

File names can be given relative or absolute (starting with a /). If absolute,
they are searched with the absolute path. If relative, they are first searched
in the OPRS DATA PATH path (see [OPRS Kernel Environment Variables], §1.3,
page 24), and if not found, they are searched in the current directory (so ’.’ is
implicitly at the end of OPRS DATA PATH). This rule also applies to files loaded
by means of commands in include files.

• set oprs data path string. Override the OPRS DATA PATH to the
given value. This command has priority over the OPRS DATA PATH
given as environment variable or as argument to the oprs command. Note
that you can use environment variable (e.g. ${HOME}, etc.), in the string.
Example: set oprs data path "data:${HOME}/openprs/data:."
set oprs data path "${OPRS DATA PATH}:${ROBOTPKG BASE}/share/openprs/data:."

• show oprs data path. Print the current OPRS DATA PATH value.

• include file name. Execute all the commands in file name. The rec-
ommended extension for these files is ‘.inc’. Include file can contain other
include directives. Only two commands are forbidden in include files:
connect and disconnect (see [Include File Format], §2.14, page 43). In-
clude files can be loaded at start-up time with the -x option (see [Argu-
ments to the oprs Command], §1.2, page 22).

• require file name. Execute all the commands in file name. This com-
mand is used to load an include file. It is exactly like the include com-
mand (see above), except that it will check that the file has not already
been loaded with another require call.

• load db file name. Load all the facts contained in file name. Note that
the format used in OPRS Development Environment is slightly different
from the one used in the SRI version of OPRS. The database file contains
a list of facts, not just the facts in a file (see [Database File Format], §5.1,

2.5. OPRS KERNEL TRACE COMMANDS 33

page 77). If you have used the Lisp version of OPRS, you can convert your
already existing database file by just adding an open parenthesis ’(’ at the
beginning, and a closing parenthesis ’)’ at the end. Functional facts and
closed world predicate declarations are no longer in the database file, but
are issued as commands (see [OPRS Kernel Database Commands], §2.2,
page 30).

• load opf file name. Load all the OPs contained in the file file name.
file name can be ‘.opf ’ OP file or a ‘.dopf’ file. In fact, if a newer ‘.dopf’
file exist, OPRS Kernel will load it instead of the ‘.opf ’. The OP Editor
accepts different OP File formats (see [OP File Format], §17, page 239).
However, the OPRS Kernel (to keep it as small and as efficient as possible)
only accepts OPF File format (‘.opf ’ or ‘.dopf’ suffix). If you wish to load
another format, it is necessary to load it under the OP Editor and save it
under OPF File format. For more information on the compilation process
(see [Procedure and Expression Compilation and Parsing], §4.4, page 75).

• delete opf file name. Delete all the OPs which were contained in the
OP File specified as argument.

• reload opf ‘file name’ . Delete and then load all the OPs contained in
the OP File specified as argument. This command keeps track of the OP
which were graphic/text traced. If the specified OP file was not loaded,
then it is equivalent to a load.

• empty op db. Empty the OP Library. It clears and frees all the OPs
loaded in the kernel. Memory is reclaimed and will be used by the system.
This command can be used while OP are being executed.

2.5 OPRS Kernel Trace Commands

There are many ways to trace various parts of the OPRS Kernel execution.
Most of these traces can be set/unset in the X-OPRS Kernel using the trace
menu (see [OPRS Trace], §13.3.4, page 193).

The general syntax is:
trace feature on|off

• trace relevant op on|off Turn on or off information on relevant OPs
(quite verbose).

• trace load op on|off Turn on or off information on the compilation of
OPs. (very verbose)

• trace applicable op on|off Turn on or off information on the set of
applicable OPs.

• trace conclude on|off Turn on or off information on fact concluded in
the database from the parser. This can be useful if you conclude fact from
the parser using internal functions such as send command to parser.

34 CHAPTER 2. OPRS KERNEL COMMANDS

• trace fact on|off Turn on or off information on facts posted in the
kernel.

• trace goal on|off Turn on or off information on the goal posted in the
kernel.

• trace suc fail on|off Turn on or off information on the success or
failure of OPs.

• trace intend on|off Turn on or off information in the intention opera-
tion in the kernel.

• trace intention failure on|off Turn on or off information on inten-
tion failure. When an intention fails, the kernel will print the chain of
goals which failed and lead to the intention failure.

• trace send on|off Turn on or off information on messages sent by the
kernel.

• trace receive on|off Turn on or off information on messages received
by the kernel.

• trace graphic on|off. Will set the graphic trace on or off (general flag).

• trace text on|off. Will set the text trace on or off for (general flag).

• trace db on|off Turn on or off traces on the database operations.

• trace db frame on|off Turn on or off the printing of the frames while
consulting the database.

• trace thread on|off Turn on or off traces on thread creation and merg-
ing.

• trace all on|off Equivalent to turn on or off: db, receive, send,
intend, suc fail, goal, relevant op, load op, applicable op and
fact.

All these trace options can be set or unset by the appropriate command in
an include file.

2.6 OPRS Kernel Run Option Commands

The option commands allow the user to set or unset some options of the OPRS
Kernel. Most of these options can be set/unset in the X-OPRS Kernel using
the options menu (see [OPRS Run Option], §13.3.5, page 196).

The general syntax is:
set option on|off

2.7. OPRS KERNEL META LEVEL OPTION COMMANDS 35

• set eval post on|off. Turn on or off the current-quote mechanism,
(see [Current and Quote], §10.7, page 141). Default value: on.

• set parallel post on|off Turn on or off the parallel posting of goals.
When this option is on, one goal for each thread active in the current
intention will be posted. Default value: on.

• set parallel intend on|off Turn on or off the parallel intending of
op-instance. Default value: on.

• set parallel intention on|off Turn on or off the parallel intention
execution. When it is on, all the intention at the root of the graph are
executed. For this option to be really useful, the parallel intend option
should be on. Default value: on. ‘This option has some very impor-
tant consequences on the standard behavior of the kernel’. In any
case the kernel always checks that a particular OP Instance has not been
already intended before intending it. This is to make sure, for example,
that you do not intend again from a meta level OP, a OP instance already
intended by the main loop or another meta level OP. Moreover, the kernel
always check that a OP Instance intended for a particular goal is intended
in the proper place, i.e. it is not intended if there is already another OP
instance which has been intended for the same goal. Note however, that
it may be intended later if it is still applicable and if the other one has
failed.

• set time stamping on|off Turn on or off the time stamping of various
date (for facts, goals, creation date, soak date, etc.). Time stamping is
quite expensive, which is the reason why this option exists. Default value:
off.

All these trace options can be set or unset by the appropriate command in
an include file.

2.7 OPRS Kernel Meta Level Option Commands

The option commands allow the user to set or unset some options of the OPRS
Kernel. Most of these options can be set/unset in the X-OPRS Kernel using
the options menu (see [OPRS Meta Level Option], §13.3.5, page 199).

The general syntax is:
set option on|off

• set meta on|off. Turn on or off the meta-level mechanism, (see [Meta
Level Reasoning], §9, page 131). Turning it off greatly increases the
performance of the system. This flag is a general flag. When it is on,
then you need to select which specific meta fact you want the kernel to
conclude or not.

36 CHAPTER 2. OPRS KERNEL COMMANDS

• set soak on|off. Turn on or off the posting of the meta fact (SOAK),
(see [SOAK and other Meta Facts], §9.1, page 131). Default value: on.

• set meta fact on|off. Turn on or off the posting of the meta fact
(FACT-INVOKED-OPS), (see [SOAK and other Meta Facts], §9.1, page 131).
Default value: on.

• set meta goal on|off. Turn on or off the posting of the meta fact
(GOAL-INVOKED-OPS), (see [SOAK and other Meta Facts], §9.1, page 131).
Default value: on.

• set meta fact op on|off. Turn on or off the posting of the meta fact
(APPLICABLE-OPS-FACT), (see [SOAK and other Meta Facts], §9.1, page
131). Default value: off.

• set meta goal op on|off. Turn on or off the posting of the meta fact
(APPLICABLE-OPS-GOAL), (see [SOAK and other Meta Facts], §9.1, page
131). Default value: off.

All these trace options can be set or unset by the appropriate command in
an include file. For efficiency reasons, it is strongly recommended to only use
the meta-level options required by the application.

2.8 OPRS Kernel Compiler/Parser Option Com-
mands

The checking commands allow the user to set or unset some compiler/Parser
checking of the OPRS Kernel. Most of these checkings can be set/unset in the
X-OPRS Kernel using the options menu (see [OPRS Compiler/Parser Option],
§13.3.5, page 198).

The general syntax is:
set checking on|off

• set action on|off Turn on or off some checking on the action compi-
lation/parsing. In particular, it will check if an action calls a function
declared as an evaluable function. See [Action Checking], §4.4.1, page 75.
Default value: on.

• set function on|off Turn on or off some checking on the function com-
pilation/parsing. Note that it will require all symbols used in place of
a function to be declared as a function. Symbols declared as evaluable
functions in the kernel are declared as function de facto. See [Function
Checking], §4.4.3, page 76. Default value: on.

• set predicate on|off Turn on or off some checking on the predicate
compilation/parsing. Note that it will require all symbols in place of a
predicate to be declared. Symbols declared as functional fact or basic

2.9. OPRS KERNEL DECLARATION COMMANDS 37

events or closed world predicates are declared as predicate de facto. See
[Predicate Checking], §4.4.2, page 75. Default value: on.

• set symbol on|off Turn on or off some checking on the symbol compi-
lation/parsing. All symbols declared by other means (evaluable functions,
predicates, actions, cwp, basic events, etc.) are declared as symbol de
facto. See [Symbol Checking], §4.4.4, page 76. Default value: on.

All these checking can be set or unset by the appropriate command in an
include file. In development phase, it is stronly recommended to keep all these
checkings on.

2.9 OPRS Kernel Declaration Commands

• declare be predicate. Declare the predicate as a basic event predicate
(see [Basic Events], §5.7, page 86). This declaration is local to the OPRS
Kernel the user is connected to.
Example: declare be foo

• declare cwp predicate. Declare the predicate as a closed world pred-
icate (see [Closed World Predicates], §5.5, page 81). This declaration is
local to the OPRS Kernel the user is connected to.
Example: declare cwp foo

• declare ff predicate integer. Declare the predicate as functional
fact for the argument integer (see [Functional Facts], §5.6, page 84). This
declaration is local to the OPRS Kernel the user is connected to. Keep in
mind that all functional fact predicate are also considered as closed world
predicate.
Example: declare ff position 1

declare ff connection status 2

• declare function function. Declare function as a function (see [Func-
tion Checking], §4.4.3, page 76).
Example: declare function pressure-of

declare function status

• declare id symbol. Declare the symbol as an id, therefore, the OP
compiler does not complain if it encounters this symbol. This command
is useful if and only if you perform it before the first occurrence of the
symbol in the OPs or in the database. As a consequence, most likely it
will appears at the beginning of the include file. See [Symbol Checking],
§4.4.4, page 76.

• declare op predicate predicate. Declare the predicate as OP pred-
icate (see [OP Predicates], §5.9, page 93). This declaration is not manda-
tory at all, but considerably improve the speed of the kernel.
Example: declare op predicate foo

declare op predicate print

38 CHAPTER 2. OPRS KERNEL COMMANDS

• declare predicate predicate. Declare predicate as a predicate (see
[Predicate Checking], §4.4.2, page 75).
Example: declare predicate foobar

declare predicate connection

• undeclare be predicate. Undeclare the predicate as a basic event
predicate (see [Basic Events], §5.7, page 86).
Example: undeclare be foo

2.10 OPRS Kernel Listing Commands

• list action. List all the functions which have been declared as action
(see [Using Action OPs], §7.7, page 114).
Example: list action

• list all. Equivalent to a list be, list cwp, list ff, list predicate,
list evaluable predicate, list op predicate, list function, list
evaluable function, list action.
Example: list all

• list be. List all the predicates which have been declared as basic event
predicate (see [Basic Events], §5.7, page 86).
Example: list be

• list cwp. List all the predicates which have been declared as closed world
predicate (see [Closed World Predicates], §5.5, page 81).
Example: list cwp

• list evaluable function. List all the functions which have been de-
clared as evaluable function (see [Evaluable Functions], §6, page 95).
Example: list evaluable function

• list evaluable predicate. List all the predicates which have been de-
clared as evaluable predicate (see [Evaluable Predicates], §5.8, page 87).
Example: list evaluable predicate

• list ff. List all the predicates which have been declared as functional
fact predicate (see [Functional Facts], §5.6, page 84).
Example: list ff

• list function. List all the functions which have been declared.
Example: list function

• list op predicate. List all the predicates which have been declared as
op predicate (see [OP Predicates], §5.9, page 93).
Example: list op predicate

• list predicate. List all the predicates which have been declared.
Example: list predicate

2.11. OPRS KERNEL DUMPING/LOADING COMMANDS 39

2.11 OPRS Kernel Dumping/Loading Commands

Since version 1.4, OPRS provides a mechanism to save OP and fact database in
a binary compiled dump format. This binary dump format present a number
of advantages.

Faster reload The main advantage of using OP and database dump/load is the
load speed compare to loading OP or database files. For large applications,
with hundreds of OP, the startup time can be critical, and it is always much
faster (5 or more times faster) to load a dump file than the equivalent OP
or database files. In fact, when one load a OP file, the kernel recompiles
the OP in some internal structure, while if you load a dump OP file,
the structures are just loaded in memory, avoiding a costly parsing and
compilation.

More than just OP files The OP dump files contains in fact more than just
the OP description, they also contain all the declarations of predicates,
functions, and symbols mentioned in the OPs.

Architecture and endian independant The dump format is intentionaly
architecture and endian independant. One can create a dump file un-
der a Pentium running Windows NT and reload it under a Sparc running
Solaris or a 680x0 board under VxWorks.

Graphic and non graphic version of OP Graphic information is dumped
according to the kernel from which you dump the OPs. That is graphical
information will be dumped, if the OP is dumped from an X-OPRS Ker-
nel; no graphical information will be dumped if dumping from an OPRS
Kernel). Similarly, when loading an OP dump, the graphic information
is loaded if and only if it is both present in the dump and if the loading
kernel may use it (i.e. an X-OPRS Kernel).

There are some drawbacks to the use of the dump/load facilities, and also
some misunderstandings:

Unreadable format The dump format is almost unreadable to the common
user (and even programmer)... Therefore, all OP files should also be kept
in source format (‘.opf ’).

Memory consumption The dump and reload of OP and database dump files
requires some memory allocation. Caution will be required when memory
is sparse (under VxWorks, for example). Some tables are required to
perform the dump and the load. These tables are temporarily allocated
and are freed afterward.

No C compiled code included C Compiled code, i.e. code linked by the user
in the OPRS Kernel is not dumped in the OPRS dump files. The main
reason is that unlike the OPRS compiled code, C compiled code is not

40 CHAPTER 2. OPRS KERNEL COMMANDS

architecture independant. Therefore, when you load a OPRS dump file,
the kernel will complain if it cannot find evaluable function, predicate, or
action code it needs.

The currently supported commands are:

• dump op ‘file name’ . Dump in binary format all the OP currently
loaded in the kernel. The suggested suffix for the dump OP file is ‘.dopf’.
If this command isexecuted from the X-OPRS Kernel, graphical informa-
tion is saved in the file.
Example: dump op "op-ex.dopf"

• dump all opf. Dump in binary format all the OP files currently loaded
in the kernel. Each file in its own ‘.dopf’ file. This command is very useful
when an application is ready and one want to compile all the OPs at once.
Example: dump op "op-ex.dopf"

• dump db ‘file name’ . Dump in binary format all the facts currently in
the database. The suggested suffix for the dump db file is ‘.ddb’.
Example: dump db "op-ex.ddb"

• load dump op ‘file name’ . Load all the OP in the dump OP file which
must be in binary format, and add them in the kernel (except for the OP
already loaded). The suggested suffix for the dump OP file is ‘.dopf’. If
this command is executed from the X-OPRS Kernel, and the dump OP
file was produced from an X-OPRS Kernel, the graphical information is
restored, otherwise, it will be unavailable (but the OP will still remain
executable). However, if it is executed from an OPRS Kernel, graphical
information if present is discarded.
Example: load dump op "op-ex.dopf"

• load dump db ‘file name’ . Load and add in the database all the fact
in the dump fact binary format file. The suggested suffix for the dump db
file is ‘.ddb’.
Example: load dump db "db-ex.ddb"

The dump/load mechanism is the first step of a broader mechanism which
will, in future releases, provide other facilities. For example, a future version of
OPRS will provide warm boot capabilities (i.e. one will be able to dump a kernel
state and later reload it and continue from the point where it was dumped). In
fact, the warm boot feature is more or less already present in the current version
but is not currently supported (i.e. use it at your own risk).

• dump kernel ‘file name’ . Dump in binary format the complete kernel
(i.e. the database, the OPs, and all the intentions). The suggested suffix
for the dump kernel file is ‘.dkrn’. If this command is executed from the
X-OPRS Kernel, graphical information is saved in the file.
Example: dump kernel "krn-ex.dkrn"

2.12. OPRS KERNEL STATUS AND CONTROL COMMANDS 41

• load dump kernel ‘file name’ . Load the kernel contained in the dump
kernel file which must be in binary dump kernel format, i.e. add the loaded
fact in the database, add the loaded OP in the OP library (except for the
OP already loaded), and replace the intention graph with the one loaded
from the file. The suggested suffix for the dump OP file is ‘.dkrn’. If
this command is executed from the X-OPRS Kernel, and the dump kernel
file was produced from an X-OPRS Kernel, the graphical information is
restored, otherwise, it will be unavailable (but the OP will still remain
executable). However, if it is executed from an OPRS Kernel, graphical
information, if present, is discarded.
Example: load dump kernel "krn-ex.dkrn"

2.12 OPRS Kernel Status and Control Commands

A number of commands exist to display the status of OPRS Kernel and to
control its execution.

• show run status. Display all the current status of the kernel. This
command is usually sent by the OPRS-Server, with a transmit command.

• step. This command will step the execution of the OPRS Kernel. This
command is usually sent by the OPRS-Server, with a transmit command.
This will lead to step through one loop of the OPRS Kernel. Note that one
loop execution does not always produce any noticeable or visible effect. . . .

• next. This command will next the execution of the OPRS Kernel. This
command is usually sent by the OPRS-Server, with a transmit command.
Executing this command will lead the kernel to run until the control hits
an edge of step traced OP. This is very useful when you graphic trace OPs.
At each click, the execution goes from one traced edge to the next traced
edge (whatever execution happens in between).

• halt. This command will halt the execution of the OPRS Kernel. This
command is usually sent by the OPRS-Server, with a transmit command.
While the kernel is halted, you can perform most command, such as con-
sulting the fact or OP Library, adding new fact or new goal (in which
case they will be taken into account whenever the kernel is restarted),
displaying a particular OP, load new OPs, etc.

• run. This command will run the execution of the OPRS Kernel. This
command is usually sent by the OPRS-Server, with a transmit command.
It will restart a stopped OPRS Kernel.

• reset kernel. Reset the kernel by flushing all the intentions in the in-
tention graph as well as flushing all the goals and facts in the input buffers
of the kernel. This does not stop the kernel and this does not flush the
fact database and the OP Library.

42 CHAPTER 2. OPRS KERNEL COMMANDS

2.13 OPRS Kernel Miscellaneous Commands

• show intention. Display all the intentions in the intention graph. It
gives an extensive status of the intentions and their component (thread,
status, waiting condition, joining, etc.).

• show condition. Display all the conditions currently active in th OPRS
Kernel. It gives an extensive status of the conditions (waiting or preserve
condition, as well as their “evolving” status).

• show memory. Display some information on the memory usage of the
kernel.

• show variable. Display all the currently used global variables and their
binding.

• disconnect. Instruct the connected OPRS to leave the stdin and give
it back to the OPRS-Server. The OPRS client returns in run mode, and
execute its main loop again.

• unify expression expression. Unify two expressions (see [General Ex-
pressions], §3.6, page 52). This can be used to check the result of the
unification mechanism.

• echo gexpression|gtexpression|gmexpression. Echo the general ex-
pression, general temporal expression or general meta expression to the
screen. This is used to check that an expression is properly parsed.

• send name message. Send the message (an Expression) to the OPRS
named name.

• add goal|fact. Add a goal (a Temporal Expression) or a fact (an Ex-
pression) in the current OPRS Kernel. Most of the time, the user would
prefer to use the similar command from the OPRS-Server (which is the
same except it take the name of the kernel as first argument). Note that
the kernel will not execute any applicable OP because of this fact or goal
before it is returned to run mode with the disconnect command.

• stat db. Print a report on the use of the various hashtables in the
database (occupation, collision, etc.). It can be used to tune your applica-
tion by using the appropriate arguments to the oprs or xoprs command
(see [Arguments to the oprs Command], §1.2, page 22).

• stat id. Print a report on the use of the symbol hashtables in the kernel
(occupation, collision, etc.). It can be used to tune your application by
using the appropriate arguments to the oprs or xoprs command (see
[Arguments to the oprs Command], §1.2, page 22).

2.14. INCLUDE FILE FORMAT 43

• stat all. Print a report on the use of all the various hashtables in the
kernel (occupation, collision, etc.). It can be used to tune your application
by using the adequate arguments to the oprs or xoprs command (see
[Arguments to the oprs Command], §1.2, page 22).

• load external ‘file name’ entry point. This is a new feature since
OpenPRS 1.1. It allows the user to load external binary code in the kernel.
It loads (with lt dlopen) the library/module (.so) ‘file name’ (produced
with libltdl) and try to call the string entry point after looking for it
with dl sym. This is now the preferred way to extend an OpenPRS kernel
with new actions, evaluable functions and predicates. The standard rules
to search the path are used to localized the ‘file name’ library/module.
Check the libltdl documentation for further information on how to produce
and install the library/module. There are examples of actions, evaluable
functions and predicates in the following files: ‘user-action.c’ ‘user-ev-
function.c’ ‘user-ev-predicate.c’. Check also the ‘Makefile.am’ file in the
‘src’ sub directory to find how the .la are produced.
Example: load external "user-action" "declare user action’’

• q|quit|exit|EOF. Quit the kernel. This command also disconnects you.
It will execute the:
end kernel user hook

function which can be used to do some cleanup (see [User Hooks], §10.2,
page 135).

• show version. Print the version of the OPRS Kernel.

• show copyright. Print the copyright notice.

• help|h|?. Print an on-line help.

2.14 Include File Format

Include files are files containing commands to be executed by an OPRS Kernel.
The recommended, but not enforced, extension for these files is ‘.inc’. Include
file can contain other include directives. Only two commands are forbidden in
include file: connect and disconnect. Include files can be loaded at start-up
time with the -x option (see [Arguments to the oprs Command], §1.2, page 22).
Lines beginning with the ; character are ignored and considered as comments. A
number of include files are provided with the OPRS Development Environment
distribution.

Here is an example of an include file:

;;; This is a comment

declare cwp property-p

trace load op off

include "/usr/local/oprs/data/new-default.sym"

44 CHAPTER 2. OPRS KERNEL COMMANDS

load opf "/usr/local/oprs/data/new-default.opf"

declare id factorial

declare id recursive

declare id prefer-iterative

declare id prefer-recursive

declare id print-factorial

declare id sssoak

declare id tas-fact

declare id foo

declare id test_par

declare id TT

declare cwp prefer-recursive

declare cwp prefer-iterative

load opf "/usr/local/oprs/data/fact-meta.opf"

trace graphic opf "/usr/local/oprs/data/fact-meta.opf" on

trace text opf "/usr/local/oprs/data/fact-meta.opf" on

trace graphic op |Print Factorial| off

Chapter 3

Syntax and Semantics Used
in the OPRS Development
Environment

The syntax and the associated semantics is the same in the OPRS Kernel, X-
OPRS Kernel, OP Editor and OPRS-Server modules. The same grammar is
used and syntax checking is done and enforced whenever possible. In other
words, unless you hand-edit the OP files themselves, it is very unlikely that an
OP produced by the OP Editor will be rejected by the OPRS Kernel.

A Lex/Yacc like format grammar can be found in [Grammar Used in the
OPRS Development Environment], §K, page 371.

Note that although the syntax is very much like Lisp, there is no Lisp inter-
preter behind the reader (see [LISPLIST], §H.1, page 357).

3.1 Variables

A variable is a symbol which can or cannot be bound to different values de-
pending on the context (see [Frames and Binding Environments], §3.4, page
52). Variables allow the user to write partially specified expressions. Depend-
ing on the context, a variable can be existentially or universally quantified.
These quantifications are usually implicit but obvious. Most often variables are
existentially quantified, i.e. the expression containing the variable is interpreted
with one possible value of all the possible values this variable can take. We
will point out situations where variables are to be interpreted in a universally
quantified way. Finally, there are operators and functions to force universal
quantification (see [Universal Quantification of Variables], §10.9, page 142).

There are two types of variables in OPRS. Logical variables (their name
starts with the dollar character, $) and program variables (their name starts
with the at sign character, @).

45

46 CHAPTER 3. SYNTAX AND SEMANTICS. . .

Figure 3.1: A OP to Compute Factorial with an Inner Loop and Program
Variables.

3.1.1 Logical Variables

Logical variables start with the dollar character $.
Example: $x, $y and $FOO.

The behavior of these variables is quite standard in logic programming (as in
PROLOG [CM84]). They are bound once and remain bound. If the execution
of the branch on which they were bound is successful, then they stay bound
(this is commonly used to bring values back to a caller) . The scope of these
variables is the procedure or the consultation expression in which they appear.

3.1.2 Program Variables

Program variables start with the at sign character @.
Example: @x, @y and @FOO.

These variables are provided for convenience. They can be bound and re-
bound at any time, even if they are already bound to some value. They are
not used in invocation or context parts due to their inability to keep a value.
They are mostly used inside the body of a procedure in constructions such as
loops (See Figure 3.1). The scope of these variables is the procedure or the
consultation expression in which they appear.

3.2. TERMS 47

3.1.3 Global Variables

Global variables start with two at sign characters @@.

These variables are provided for convenience. They can be bound and re-
bound at any time (like Program Variables see [Program Variables], §3.1.2, page
46), even if they are already bound to some value. Their main characteristic
is that they are visible all over the OPRS Kernel or X-OPRS Kernel in which
they are used. The scope of these variables is the whole kernel.

Note that this mechanism should not be used in place of the database itself,
it should only be used for information widely used, and ever changing, and
which are difficult or expensive to recompute.

3.2 Terms

Terms are an important component of the OPRS syntax. They are of various
types and are the building blocks used to build more complex expressions. Terms
are generic, and can be of the following types. For each of them, we indicate in
parenthesis the C type as defined in ‘oprs-type-pub.h’.

3.2.1 Integer as a Term

A term can be an integer. Its C type in the Term structure is INTEGER. In the
OPRS Kernel, integers become C int. A direct consequence is that they are not
bignums (a la Lisp). Therefore, there are maximum values for these numbers.
Check the C compiler and your machine architecture for specific maximum and
minimum values.

Example of integers: (the parser will accept a useless l) 0 1 -3 4732 +34l

-0 +0 -023l.
Example of numbers which are probably not recognized as integers: 123123123123123123
--4.

3.2.2 Long long integer as a Term

A term can be a long long integer, i.e. a 64 bit integer. Its C type in the Term
structure is then LONG LONG. In the OPRS Kernel, long long integers become
C long long int. You can perform computation on integer larger than the
“regular” int. Yet, there is a maximum value (probably 2**(63) - 1). Check the
C compiler and your machine architecture for specific maximum and minimum
values.

Example of integers: 0ll 1123ll -345345ll +83453234ll.
Example of numbers which are probably not recognized as long long integers:
121231231233123123123123123 --4l.

48 CHAPTER 3. SYNTAX AND SEMANTICS. . .

3.2.3 Float as a Term

A term can be a float. Its C type in the Term structure is then TT FLOAT. In
the OPRS Kernel these floats are casted in C double. Check your C compiler
and your machine architecture for specific maximum and minimum values.

Example of floats: 123.234, -45.0, +34.1, 123E-4, -45.90e+23, 45.90e23

Example of numbers which are probably not recognized as floats: +.345 234

e34.

3.2.4 String as a Term

A term can be a string. Its C type in the Term structure is then STRING. These
strings are standard strings, as commonly encountered in C. They use the same
backslash notation as the one used in C. To insert a " in a string you must
backslash it with a \.

Example of strings: "This is a string $#%$^%$^ ",
"This is another string with a \" embedded and even a \n
which will become new line."

Example of non strings: "This is a " not a string because of the char

" in it".

3.2.5 Symbol as a Term

A term can be a symbol. Its C type in the Term structure is then TT ATOM.
Symbol surrounded by vertical bars (|) can contain any characters, except the
vertical bar itself, (e.g. white space, tab, etc). The case of Symbols may be
changed automatically according to the option used – either automatically up-
cased or down-cased – unless they are surrounded by vertical bars (|). In some
situations, (such as printing node names, or script names, the vertical bars are
not printed around the symbol).

Example of symbols: nil, t, |Foo Bar|, :BOO, bar.
Example of non symbols: 123il, |#:|123|, $g45, @x, $32a, .asd.

3.2.6 Variable as a Term

A term can be a variable. Its C type in the Term structure is then VARIABLE.
Variables can be bound, in this case they are always bound to a Term (another
variable for example). This depends on the binding environment in which they
appear. Variables are case-shifted in the same way as symbols.

Example of variables: $g45, $x, $32a, @foo, @BoO, @@Global.

3.2.7 Variable List as a Term

A term can be a variable list. Its C type in the Term structure is then LENV.
Variable lists are used for different functions (see [Universal Quantification of
Variables], §10.9, page 142), or in multi variable special actions (see [Multi
Variable Special Action], §4.3.3, page 70).

3.2. TERMS 49

Example of variable list: ($g45 $x $32a @foo @BoO).

3.2.8 Gtexpression as a Term

A term can be a gtexpression. Its C type in the Term structure is then GTEXPRESSION.
See [General Temporal Expressions], §3.7, page 53. Gtexpression as terms are
used in test-and-set or apply-subst-in-gtexpr functions.

Example of gtexpression: (? (foo a $x)), (achieve (position $x closed)).

3.2.9 Gexpression as a Term

A term can be a gexpression. Its C type in the Term structure is then GEXPRESSION.
See [General Expressions], §3.6, page 52. Gexpression as terms are used in all

and n-all functions. From the reader, only LEXPRESSION are allowed, to be
able to distinguish them from TERM COMP.

Example of lexpression: (& (foo $x b) (bar $x b)).

3.2.10 Composed Term as a Term

A term can be a composed term. Its C type in the Term structure is then
TERM COMP. Beware, these terms look like Lisp lists, but they are not (see below
for a description of the Lisp list). Composed terms are a list which first element
is a function name and the rest of the element of the list are terms. The function
appearing in this context are not always evaluable. Of course, composed terms
can contain composed terms recursively.

Example of composed terms: (+ 1 2), (foo a b), (l list 1 2 3 4),

(cdr (.2 4 7 .)).

3.2.11 Lisp List as a Term

A term can be a Lisp list. Its C type in the Term structure is then LISP LIST.
Lisp lists are provided for upward compatibility with the Lisp version of OPRS.
However, we do not encourage the use of Lisp functions and lispisms in OPRS.
Therefore, to distinguish Lisp lists from other lists like structure (such as com-
posed terms), we use a different parenthesis scheme. The Lisp lists are sur-
rounded with parenthesis followed or preceded with the dot char .. Moreover,
when read by the parser, we only allow terms in the list (so you can still have
lists of lists, etc. . .). However, the kernel uses this data structure to handle
list of OP Instances, Goals, Intentions or other internal data structures when
necessary. In this case the printed form is the name of the structure followed by
the address of the object in memory. See [LISPLIST], §H.1, page 357 for more
on this subject.

Example of Lisp lists: (. 2 4 7 .), (. 2 (. 2 (. 2 4 7 .) 4 7

.) 4 7.).

50 CHAPTER 3. SYNTAX AND SEMANTICS. . .

3.2.12 User Pointers as a Term

A term can be a user pointer. Its C type in the Term structure is then a
U POINTER. A user defined pointer is a pointer on a user created object which
he wants to manipulate. For example, an evaluable function may return such
pointer (like the pointer to a complex data structure), which can then be used
by other user defined evaluable functions to access specific fields of the data
structure, or by user-defined evaluable predicates or actions. The kernel will
only consider the pointer itself, it will not consider the object pointed by the
U POINTER. Therefore, it will not free it, nor will it copy it or compare it with
other similar object. Last, the comparison of U POINTER is a pointer comparison.
U POINTER are written with the hexadecimal printout format of C. U POINTER

can be read by the OPRS Kernel and the X-OPRS Kernel. For this, use the 0x

prefix and an hexadecimal number. This can be useful if you want to consult
the database or post a fact or a goal with an expression containing a U POINTER

for which you know a corresponding object exist. See [User Pointers], §10.10,
page 142 for more on this subject.

Example of user pointer: 0xff30, 0xA120.

3.2.13 Array of Integers as a Term

A term can be an array of integers. Its C type in the Term structure is then
INT ARRAY. Arrays of integers are read by the various programs of the OPRS
Development Environment using the [and a matching] square bracket. In this
case, the type of the first element determine the type of the whole array. If it is
an INTEGER, then the array is an INT ARRAY, if it is a FLOAT, then the array is a
FLOAT ARRAY (see below). Any subsequent element is properly casted if possible,
if not it is set to 0. The size of arrays read is the number of element read. Arrays
can be created/accessed/set with the appropriate evaluable functions (see [Array
Manipulation Evaluable Functions], §6.1.2, page 97) and actions (see [Array
Manipulation Actions], §7.7.1, page 116). Arrays can also be created/consulted
using the appropriate functions (see [Array Manipulation Functions], §G.1.5,
page 336).

Example of array of integers: [1 2 4 5 0 3 4], [1 3 4.5 5 7] (note that
the 4.5 will be casted in 4).

3.2.14 Array of Floats as a Term

A term can be an array of floats. Its C type in the Term structure is then
FLOAT ARRAY. Arrays of floats are read by the various programs of the OPRS
Development Environment using the [and a matching] square bracket. In
this case, the type of the first element determines the type of the whole array.
If it is an INTEGER, then the array is an INT ARRAY, if it is a FLOAT, then the
array is a FLOAT ARRAY (see above). Any subsequent element is properly casted
if possible, if not it is set to 0.0. The size of arrays read is the number of ele-
ment read. Arrays can be created/accessed/set with the appropriate evaluable

3.3. SPECIAL SYMBOLS 51

functions (see [Array Manipulation Evaluable Functions], §6.1.2, page 97) and
actions (see [Array Manipulation Actions], §7.7.1, page 116). Arrays can also
be created/consulted using the appropriate functions (see [Array Manipulation
Functions], §G.1.5, page 336).

Example of array of floats: [1.5 4.2 4.0 5.888 0.0 3e4 3.1415], [1.0
3.0 4 5.123 7123.123] (note that the 4 will be casted in 4.0).

3.2.15 C List as a Term

A term can be a C list. Its C type in the Term structure is then OPRS LIST. C
lists are only used when you want to return more then one value from an action,
i.e. for a multi variable special actions (see [Multi Variable Special Action],
§4.3.3, page 70). These C lists are always lists of Term *. These lists look
like composed terms, or Lisp Lists, but they are not. They are not readable,
although they are, to some extend, printable.

Example of C lists, as you could build one to return from a multi variable
special action: (1 2 3 nil foo (foo "asd" bar)).

3.2.16 Other Objects as Term

There are other objects which can be terms: TT FACT, TT GOAL, TT INTENTION,
TT OP INSTANCE. These objects are manipulated by the user but cannot be read
from the parser as is.

3.3 Special Symbols

There are a number of predefined symbols in the OPRS Kernel. These symbols
can be useful to the user to write evaluable functions (see [Evaluable Functions],
§6, page 95) or actions (see [Using Action OPs], §7.7, page 114). They are
defined in the file ‘oprs-type-pub.h’.

extern Symbol lisp_t_sym; /* The Lisp t symbol. */

extern Symbol wait_sym; /* The :wait symbol. */

extern Symbol nil_sym; /* The Lisp nil symbol */

lisp t sym Special Symbol

extern Symbol lisp t sym is the T symbol as returned by evalu-
able functions and actions upon success.

nil sym Special Symbol

extern Symbol nil sym is the NIL symbol as returned by evaluable
functions and actions upon failure.

wait sym Special Symbol

extern Symbol wait sym is the :WAIT symbol as returned by ac-
tions when they have not completed their computation.

52 CHAPTER 3. SYNTAX AND SEMANTICS. . .

3.4 Frames and Binding Environments

Frames (also called Binding Environments) are a very important component of
the unification mechanism. The reasons why this mechanism is important is of
little interest to the end user, however, it is important that the user be able to
“read” and “interpret” such frame constructs. One has to remember that frames
give the binding of variables. Frames can be installed or not. When they are
installed, the variables are bound to the values specified by the frame. Note that
they can be bound to a value specified by another frame. As a consequence, a
variable cannot be bound in two different frames at the same time.

A frame looks like this:

{ installed-boolean (variables-binding) previous-frame }

Here is a real example commented:

{0 ; \r{it is not installed}

([{$Z->(Term *)NULL } >> C] ; \r{3 uninstalled bindings, $Z to C}

[{$Y->(Term *)NULL } >> B] ; \r{$Y to B}

[{$X->(Term *)NULL } >> A]) ; \r{$X to A}

{ ; \r{The previous frame}

1 ; \r{is installed,}

() ; \r{but does not have any binding to install,}

{} ; \r{and point on the empty frame.}

}

}

3.5 Properties

Properties are pairs: (symbol term). Properties are used in OPs to handle
user-defined information which can be relevant to subsequent computation in
particular for meta level reasoning. For example, if you want to implement a
priority mechanism, then you can define a priority slot in the properties of your
OP and then write a meta level OP which, when necessary, will look in this slot
and intend the OP with the appropriate priority. Note that we can have a term
which is evaluated at run time, if the function is an evaluable function.

Example of properties: (priority 12), (decision-procedure t), (importance

(+ 4 $x)).

3.6 General Expressions

Expressions are used to represent facts in OPRS. General expressions (gexpres-
sion) embed expressions and logical expressions (lexpression). Logical expres-
sions are just a combination of general expressions using the standard logical
operators.

General expressions (gexpression) are defined as follows:

3.7. GENERAL TEMPORAL EXPRESSIONS 53

gexpression := expression | lexpression

lexpression := (expr logical operator gexpression+)

expression := (predicate term*) | (~ (predicate term*))

predicate := SYMBOL

expr logical operator := & | ||

Example of gexpressions:
(foo a b),
(factorial 5 120),
(> 3 2),
(& (foo a $x) (bar $x 7)),
(~ (toto 45 (+ 3 4))).

3.7 General Temporal Expressions

Temporal expressions (in short texpression) are used to represent goals in OPRS.
A texpression is a gexpression with a temporal operator. General temporal
expressions (gtexpression) embed texpressions and logical temporal expressions
(ltexpression). Logical temporal expressions are just a combination of general
temporal expressions using the standard logical operators.

General Temporal Expressions (gtexpression) are defined as follows:

gtexpression := texpression | ltexpression

ltexpression := (texpr logical operator gtexpression+)

texpression := (temporal operator gexpression)

temporal operator := ! | ? | ^ | # | % | => | ~> |

achieve | test | wait | preserve |

maintain | conclude | assert | retract

texpr logical operator := & | V

According to the temporal operators, the gexpression contained is treated
differently.

The different temporal operators are the achieve operator, the test operator,
the wait operator, the passive preserve operator, the active preserve operator,
the assert/conclude operator and the retract operator.

Example of gtexpression:
(! (factorial 5 $x)),
(wait (tank full)),
(? (> $x 5)),
(test (! (position valve close)) (# (< (pressure-of tk1) 320))).

Note that not all gtexpressions have a defined associated semantics. We shall
see examples of such gtexpression at the end of this section.

3.7.1 Achieve Operator

The achieve operator is represented with the symbol: !, or with the symbol
achieve (in upercase or lowercase).

54 CHAPTER 3. SYNTAX AND SEMANTICS. . .

The semantics of this gexpression is to try anything “possible” to make the
gexpression true. Either it is already true in the database, if not and if any
OP is applicable to satisfy this goal, it will be attempted. If the OP executes
successfully, then the goal is achieved.

Example: (! (position valve close)) is true of a sequence of states in
which the position of the valve is closed at the end. However, the kernel is unable
to handle goals such as: (& (! (position valve close)) (! (pressure

tk1 200))), because it does not know how to handle this type of conjunc-
tion. However, a goal such as (! (& (position valve close) (pressure

tk1 200))) may be achieved if (& (position valve close) (pressure tk1

200)) is already true in the database. Last, (& (! (position valve close))

(# (pressure tk1 200))) is allowed.

3.7.2 Test Operator

The test operator is represented with the symbol: ?, or with the symbol test
(in upercase or lowercase).

The semantics of this gtexpression is to check if the gexpression is currently
true. Either it is already true in the database, or if any OP is applicable to
satisfy this goal, it will be attempted. If it is not true, or cannot be achieved
by the execution of a OP, it is considered as failed.

Example: (? (position valve close)) is true if and only if the valve is
currently closed. Note that this information may not be directly available in
the database, but may be concluded from other information, such as the fact
that two sensors agree on the fact that it is closed, or by calling an external
function to check it. In both cases, a OP responding to this particular goal
should be provided and would perform the appropriate computation. Note
that as for the achieve goal, the kernel is unable to handle goals such as: (&

(? (position valve close)) (? (pressure tk1 200))), because it does
not know how to handle this type of conjunction. However, a goal such as (?

(& (position valve close) (pressure tk1 200))) may be achieved if (&

(position valve close) (pressure tk1 200)) is true in the database. In
other words, the database is able to handle conjunction and disjunction, but not
the OP retrieval mechanism. This problem can be solved using multi thread
execution (by putting each goal on a separate thread).

3.7.3 Wait Operator

The wait operator is represented with the symbol: ^, or with the symbol wait
(in upercase or lowercase).

The semantics of this gtexpression is to wait until the gexpression becomes
true. Either it is already true in the database, or the kernel waits until it
becomes true by putting the intention or task, from which this goal comes from,
to sleep. Note that this goal never fails. . . The intention or thread sleeps until
it becomes true, so at worst, the intention sleeps forever.

3.7. GENERAL TEMPORAL EXPRESSIONS 55

Example: (^ (position valve close)) will always return true. It is just a
matter of when it will return. The kernel will suspend the thread executing this
goal until the condition is satisfied, so it can never fail (but it can remain sus-
pended for ever too). Waiting goals are often combined to make watchdog, such
as: (^ (|| (position valve close)) (elapsed-time (time) 10)), which
will wait until either the valve is closed or 10 seconds elapsed. Note that there
are no way to know which condition satisfied, but usually it is just a matter of
putting a test after this goal to check which condition is true or not.

3.7.4 Passive Preserve Operator

The preserve operator is represented with the symbol: #, or with the symbol
preserve (in upercase or lowercase).

The semantics of this operator is to preserve the truth of the gexpression.
This is a passive preservation, i.e. when the gexpression becomes false, auto-
matically, this goal and presumably any conjunction of goals it is part of is
considered as failed.

Example: The passive preserve operator is never used alone, it is always used
in a conjunction such as in: (& (! (position valve close)) (# (pressure

tk1 200))) which will attempt to close the valve while checking that the pres-
sure in tk1 remains equal to 200. Note that the passively preserved condition
are checked continuously (as new events are received by the system). Moreover,
if the preserved condition fails, the conjunction fails. It is then up to the user
to figure out what went wrong and take any appropriate action accordingly.

3.7.5 Active Preserve Operator

The active preserve operator is represented with the symbol: %, or with the
symbol maintain (in upercase or lowercase).

The semantics of this operator is to actively preserve the truth of the gex-
pression. This is an active preservation, i.e. when the gexpression becomes false,
the system tries automatically to re-achieve it by invoking a OP which has this
goal in its invocation part. When the condition is failed, the execution thread
in which this goal appears is stopped and the system will try to reachieve the
condition.

Example: The active preserve operator is never used alone, it is always used
in a conjunction such as in: (& (! (position valve close)) (% (pressure

tk1 200))) which will attempt to close the valve while checking that the pres-
sure in tk1 remains equal to 200. Note that the passively preserved condition
are checked continuously (as new events are received by the system). Moreover,
if the preserved condition fails, the kernel will attempt to reestablish it by call-
ing a OP which match this active preserve goal. If all attempts to reestablish
the fail condition fail, then the conjunction is failed.

56 CHAPTER 3. SYNTAX AND SEMANTICS. . .

3.7.6 Assert/Conclude Operator

The conclude operator is represented with the symbol: =>, or with the symbol
conclude, or with the symbol assert (in upercase or lowercase).

When executed, this goal has for effect to assert the gexpression in the
database. To do so, the gexpression is transformed as a fact and is pushed into
the kernel (and can lead to OP execution). This goal always succeeds.

Example: (=> (position valve close)). One can also put more then one
conclude or retract goal in a conjunction: (& (=> (position valve close))

(=> (pressure tk1 200)) (~> (ALARM)))).

3.7.7 Retract Operator

The retract operator is represented with the symbol: ~>, or with the symbol
retract (in upercase or lowercase).

When executed, this goal has for effect to retract the gexpression from the
database. It always succeeds.

Example: (~> (position valve close)). One can also put more then
one conclude/assert or retract goal in a conjunction: (& (~> (position valve

close)) (~> (pressure tk1 200)) (~> (ALARM)))).

3.8 General Meta Expressions

A general meta expression (gmexpression) is defined as follows:

Gmexpressions are mainly used in invocation part and other OP text fields.
There is no real reason for them to exist under this form, and they are pro-
vided, as is, more for upward compatibility with SRI Lisp OPRS than for real
syntactic reasons. The parser has been modified to allow directly gexpressions
and gtexpressions. The parser does nore recognizes the old *FACT and *GOAL

markers (see [Principal Differences with SRI PRS], §B, page 285).

gmexpression := mexpression | lmexpression

lmexpression := (mexpr logical operator gmexpression+)

mexpression := gexpression | gtexpression

mexpr logical operator := AND | OR | NOT

3.8.1 FACT Meta Expressions

The FACT Meta Expressions are used to designate a gexpression in the OP
applicability fields.

Example of FACT Meta Expressions:
(FOO a b),
(> 4 3),
(foo 32 "this is a string"),
(elapsed-time (time) 32).

3.9. FACTS 57

3.8.2 GOAL Meta Expressions

The GOAL Meta Expressions are used to designate a gtexpression in the OP
applicability fields.

Example of GOAL Meta Expressions:
(? (bar a b)),
(! (factorial $x $y)),
(? (> 3 4)),
(^ (elapsed-time (time) 10)).

3.9 Facts

Facts are gexpressions concluded in the system. For example, the effects part of
a OP is a list of Texpressions (only conclude and retract operator). Each of the
concluded Gexpressions (only Expressions) is concluded in the system as a new
fact. However, facts contain much more information than just the gexpression
from which they originate. For example they keep track of various dates, like
their creation date, or the date at which they have been completely parsed by
the applicable OP mechanism (see [Fact and Goal Manipulation Functions],
§G.1.6, page 337).

Facts, as opposed to goals, are not linked in any way to the procedure,
intention or external module they come from. Facts are perfectly anonymous
in the sense that they are just a piece of information which is concluded in the
database and which may start some procedures. However, if a fact is a message,
then its data structure stores the module from which it originated. Nevertheless,
for any fact or message, the success or failure of the procedures applicable
because of them is of no interest to anybody (i.e. any OP or intention). . .

Facts cannot contain any unbound variable. They would be meaningless as
these facts are not associated with any binding environment.

3.10 Messages

Messages are facts. They are called messages because they come from “outside”
(presumably from a different agent such as another OPRS Kernel or an external
program such as a monitor). Moreover, they usually come on the Message Passer
socket. As soon as they are received by the OPRS Kernel, they are treated as
Facts. When received, the message contains the name of the sender, and if the
appropriate trace flag is on, a message on the screen advises you of the arrival
of the message as well as of the name of the sender. This information is kept
in the fact which will be created from the message, and can be retrieved with
the appropriate access function (fact sender, see [Fact and Goal Manipulation
Functions], §G.1.6, page 337).

58 CHAPTER 3. SYNTAX AND SEMANTICS. . .

3.11 Goals

Goals (as opposed to facts) are linked to an already existing and executing
procedure and intention (the intention in which this procedure executes). They
can contain unbound variables, which are often used to return values. For
example, when the goal: (! (factorial 4 $X)) is posted, you most likely
expect the $X to be bound to 24 upon success of this goal.

Although it is technically possible, it is contrary to OPRS philosophy to post
a goal in a kernel. Goals should only come from the execution of procedures.
An agent usually does not directly give a goal to another agent. It merely passes
a message containing a request to achieve a goal, in which case a message, i.e. a
fact, is passed to the OPRS Kernel. Moreover, if you directly post a goal from
the “keyboard” you may lose it, if the applicable OP selection mechanism does
retain its OP Instance for execution (if the goal is posted by the kernel, it will
be automatically reposted until failure or success).

Chapter 4

OP Syntax and Semantics

OPs must follow a very rigorous syntax. The OP Editor and the OPRS Kernel
will enforce this syntax as much as possible. As a matter of fact, any OP properly
parsed by the OP Editor should be parsed and compiled (for the syntax part)
without any problem by the OPRS Kernel.

OPs are composed of two parts. A number of text fields which define the
“declarative” part of the procedure, and the Graph part (in some OPs, it is
just an action), which defines the operative or the procedural part of the OP.
The declarative part is composed of various fields. Three of these fields are
controlling the applicability of the OP, the invocation part, the context part,
and the setting part. To be applicable, these three parts must be true, but in a
different way.

4.1 OP Applicability Fields

The applicability fields are the field controlling the applicability of the OP. They
are: the invocation part, the context part, and the setting part. For a OP to
be applicable, these three fields must be true in the same binding environment.
However, each field has a particular semantics, which should be respected to
take full advantage of OPRS OP triggering mechanism. The invocation part
is a logical expression describing the events that must occur for the OP to be
executed. Usually, these consist of some changes in system goals (in which
case, the OP is invoked in a goal-directed fashion) or system beliefs (resulting
in data-directed or reactive invocation), and may involve both. The context
part is a logical expression specifying those conditions that must be true of the
current state for the OP to be executed. The setting part is a logical expression
specifying conditions that must be true, but for which the truth value can be
determined before the system runs (after the database and the OP have been
loaded). In other words, the conditions appearing in the setting part are not
run-time dependent. One can see that this separation between the invocation
part, the context part, and the setting part is only justified by performance and

59

60 CHAPTER 4. OP SYNTAX AND SEMANTICS

efficiency reasons.

4.1.1 Invocation Part

The Invocation part is a General Meta Expression (see [General Meta Expres-
sions], §3.8, page 56). It specifies which facts, goals or any combination of both
can trigger the applicability of a OP. Keep in mind that only the facts and goals
specified in the invocation part can trigger the OP applicability. In other words,
a OP is considered relevant, i.e. considered for applicability, only if the system
has a new goal or a new fact which is specified in the invocation part of this
OP. Note that for this reason there is no point at all in putting an evaluable
predicate in the invocation part of a OP.

Example of invocation part:
(ALARM),
(position $x BP),
(OR (ALARM) (FIRE)),
(AND (ALARM) (OVERPRESSURIZED $TANK)).

4.1.2 Context Part

The Context part is either a General Meta Expression (see [General Meta Ex-
pressions], §3.8, page 56), or nothing.

It contains information which must be true for the OP to be applicable, but
the difference with the invocation part is that the occurrence of this information
does not trigger the OP applicability.

Example of context part:
(POSITION $T $POS),
(> $X 245),
(OR (FOO $x) (BAR $Y)),
(AND (POSTION $T OPEN) (STATUS $T GOOD)).

4.1.3 Setting Part

The Setting part is either a General Meta Expression (see [General Meta Ex-
pressions], §3.8, page 56), or nothing.

It contains information which must be true to make the OP applicable, but
this information is not supposed to change over time. In other words, the truth
value of this part (or more accurately, the frames in which this gmexpression is
true) can be defined at OP compile time (providing the fact database is loaded).

Example of setting part:
(CONNECTED $PIPE $TANK),
(ASSOCIATED-SENSORS $S1 $S2),
(OR (ASSOCIATED-SENSORS $S1 $S2) (ASSOCIATED-SENSORS $S2 $S1)),
(AND (ASSOCIATED-XDCR $TK1 $XDR1) (ASSOCIATED-XDCR $TK2 $XDR2)).

4.2. OP OTHER FIELDS 61

4.2 OP Other Fields

Other fields used in OP include:

4.2.1 Effects Part

The Effects part is either a list of General Temporal Expressions (see [General
Temporal Expressions], §3.7, page 53), or nothing.

It contains a list of conclude or retract texpressions which are concluded or
retracted upon successful execution of the OP.

Example of effects part:
(),
((=> (POSITION $T $POS))),
((~> (POSITION $T $POS))),
((=> (POSITION $T1 $POS1)) (=> (POSITION $T2 $POS2)) (=> (POSITION

$T3 $POS3))),
((~> (FOO $x)) (=> (FOO $y)) (=> (BAR $X $Y))).

4.2.2 Properties Part

Important properties of the OP are represented in the properties slot. The
Properties part is either a list of properties (see [Properties], §3.5, page 52), or
nothing. It contains a list of properties which can be used by the appropriate
predicates (see [OP Instance Related Evaluable Predicates], §5.8.1, page 89
and functions see [OP Instance Related Evaluable Functions], §6.1.3, page 98).
Properties are usually used by meta level OP (see [OP Properties], §10.1, page
135) to retrieve specific information about OPs.

Example of properties part:
(),
((DECISION-PROCEDURE T)),
((ID FOO)),
((RESOURCE-USED PLATINE)),
((SPEED (evaluate-speed $x $y $z)) (RELIABILITY 23)),
((PRIORITY $X)).

4.2.3 Documentation Part

The Documentation is a string. Its purpose is to document the OP.

Example of documentation part:
"",
"This string document the OP.",
"You can put variable names such as $x in documentation strings.",
"This OP will kill its own intention after 10 seconds. 10, 9, 8, 7,

6, 5, 4, 3, 2, 1... Ophbooum...",
"This is a test OP. Please ignore.".

62 CHAPTER 4. OP SYNTAX AND SEMANTICS

4.3 Execution Part

There are two different types of OPs in OPRS. Action OPs are the basic or low
level actions of the system, and Graph OPs are the real procedures or plans of
the system.

4.3.1 Graph OP

The body of a OP is represented as a graphic network and can be viewed as a
plan or plan schema. Each arc of the network is labelled with a goal.

A typical example of a OP is given in Figure 4.1, which describes a procedure
to isolate close a valve in the truck demo presented in See [Truck Loading
Example], §23.1, page 269. The invocation part describes useful conditions for
this OP. In this case, the OP is considered useful whenever the system acquires
the goal to close or open a valve, provided the various facts given in the context
part are true. (In determining the truth value of the invocation part, some of the
variables appearing in the invocation part will be bound to specific identifiers.
Indeed, in this case, all the time out values will be so bound.)

Figure 4.1 presents an older version of this OP. The OP body describes what
to do if the OP is chosen for execution. Execution begins at the start node
in the network, and proceeds by following arcs through the network. Execution
completes if it reaches a finish node (a node with no exiting arcs). If more
than one arc emanates from a given node, any one of the arcs emanating from
that node may be traversed. To traverse an arc, the system must either (1)
determine from the database that the goal has already been achieved or (2) find
a OP (procedure) that achieves the goal labelling that arc. For example, to
cross the arc emanating from the start node requires either that the system has
already flipped the switch or that some OP to do it be successfully executed.
If the system fails to go through an arc emanating from some node, other arcs
emanating from that node may be tried. If, however, the system fails to achieve
any of the goals on arcs emanating from the node, the OP as a whole will fail.
For instance, since only one arc emanates from the START node in Figure 4.2,
if all attempts to flip the switch fail, this procedure for opening or closing the
valve will also fail.

4.3.2 New Graph OP Construction

There are some new graph construction allowed in OPRS Development Envi-
ronment: the “IF-THEN-ELSE” node; to express conditional branching, and
the “split” and “join” node; to express parallel execution. These two new con-
structions are presented in the next sections.

IF-THEN-ELSE Node

The “IF-THEN-ELSE” node was introduced in OPRS to simplify the construc-
tion of OPs. To illustrate this we show a OP written the old way, and then the

4.3. EXECUTION PART 63

Figure 4.1: Another Example of a OP

64 CHAPTER 4. OP SYNTAX AND SEMANTICS

Figure 4.2: An Example of a OP

4.3. EXECUTION PART 65

Figure 4.3: A OP to Compute Factorial Recursively (Old if-then-else Form).

same one with the new way.
The OP shown on Figure 4.3 computes factorial recursively. One can see

that the OP starts with a test to check if $n is either greater than 1 or smaller.
The OP shown on Figure 4.4 performs exactly the same operation: computes

factorial recursively. However, one can see that the OP S1 and S3 nodes have
been replaced by a N0 node which is surrounded by two nodes labeled T and F.
This node N0 is a “IF-THEN-ELSE” node. It works as follows: when an edge
as an “IF-THEN-ELSE” outgoing node, the goal labeling this edge never fail.
In other words, the transition is always possible. If the goal is achieved (in our
example if the goal (? (<= $n 1)) is true), then the execution proceeds from
the T node, otherwise, it proceeds from the F node. This construction is in fact
very similar to the old test-and-set construction (see [Miscellaneous Actions],
§7.7.1, page 121).

Figure 4.5 and Figure 4.6 show another example of an old form and a new
form of procedure.

Apart from the visual aspect, this “IF-THEN-ELSE” construction is also
more efficient as you will evaluate less goals (1 goal instead of 1.5 goal in aver-
age).

Split and Join Node

The split and join node is a construction which is linked to the use of parallel
execution (see [Parallel Execution of OPs in OPRS], §8, page 127).

66 CHAPTER 4. OP SYNTAX AND SEMANTICS

Figure 4.4: A OP to Compute Factorial Recursively (New if-then-else Form).

Figure 4.5: A OP to Compute Factorial Iteratively (Old if-then-else Form).

4.3. EXECUTION PART 67

Figure 4.6: A OP to Compute Factorial Iteratively (New if-then-else Form).

Figure 4.7: A OP to compute Fibonacci (without parallelism).

68 CHAPTER 4. OP SYNTAX AND SEMANTICS

Figure 4.8: A OP to compute Fibonacci (with parallelism).

Here also we illustrate this new construction with concrete examples. Fig-
ure 4.7 shows a OP which computes Fibonacci. In this particular case, the two
recursive calls can be done in parallel. Figure 4.8 shows an example of such con-
struct. In this particular example we mixed the “IF-THEN-ELSE” construction
with the split node. The F node of the N0 “IF-THEN-ELSE” node is a split node
(this is represented with the thick bottom of the node). Similarly, the S4 node
is a join node. Basically, a split node split as many thread as it has outgoing
edges, and a join node merge as many thread as they are ingoing edges. See
[Parallel Execution of OPs in OPRS], §8, page 127 for more on this subject.

4.3.3 Action OPs

Some OPs have no bodies. These are the primitive OPs of the system and
are associated to a primitive action that is directly performable by the system.
Clearly, execution of any OP must eventually reduce to the execution of se-
quences of primitive OPs (unless, of course, each of the subgoals of the OP has
already been achieved).

There are two types of action OPs. They correspond to 2 types of behavior.
With Standard Action, you expect the performed action to return a symbol
(usually T, NIL or :WAIT, see [Important Variables], §G.1.2, page 334, and [Spe-
cial Symbols], §3.3, page 51) to inform the system of the success or the failure
of the execution. However, in many application one want to grab the value(s)
returned by the action and eventually bind it/them or unify it/them with a
variable or a list of variables, this is the role of the Special Action and Multi
Variable Special Action. Last, not least, in both cases, the action can return
before completion (there is a special value :WAIT for this purpose) and will be

4.3. EXECUTION PART 69

Figure 4.9: A Standard Action OP

Figure 4.10: A Special Action OP

automatically called again after the system has checked for new applicable OPs
(see [Action Slicing], §10.11, page 143).

Standard Action

The standard action is a Composed Term (see Figure 4.9). The function part
of this composed term must be declared as an action (see [How to Define your
Own Actions], §7.7.2, page 122). The value returned by the evaluation of this
function is meaningful. It must be a pointer to term, and this term will be
freed by the caller. If it returns the term symbol :wait, the function has not
completed its execution and it should be called again later. If it returns the term
symbol NIL, then the action is considered as failed and the OP failed the goal it
was working on. Any other term value returned is considered as a success, and
the action OP is successful.

Example of standard action: (print $x), (send-message $x $y), (init-robot),
(goto-location $x $y).

Special Action

Special actions are provided to allow the binding of the result from the action
evaluation. Their syntax is different (see Figure 4.10). A special action must
be of the following form:
(*=* <variable> <composed-term>).

70 CHAPTER 4. OP SYNTAX AND SEMANTICS

Figure 4.11: A Multi Variable Special Action OP

Here also, the function part of the composed term must be an action (see
[Using Action OPs], §7.7, page 114) or an evaluable function (see [Evaluable
Functions], §6, page 95). The only difference with standard action is that the
result of the evaluation is unified with the variable. The success or the failure of
the OP itself depends on the result of the unification. If the unification succeeds,
then the OP is considered as successful, it is a failure otherwise. Note that if
the action returns the term symbol: :WAIT, the action will be called again later.

Example of special action: (*=* $y (read)), (*=* $status (init-system

$y)), (*=* T (confirm $y)).

Multi Variable Special Action

One can bind a list of terms/variables to a list of terms returned by an action
(see Figure 4.11).

The newly allowed form for special action is thus:
(*=* (<variable>*) <composed-term>).
The old form remains valid. The behavior is exactly the same, except that the
action is expected to return a list of terms. Each term will be unified against
the corresponding term/variable in the list. If the number of terms differ (i.e.
there are two variables in the list and the action returns three terms), or if one
of the unification fails, the action fails. Note that if the action returns the term
symbol :WAIT, the action will be called again later.

Example of multi variable special action:
(*=* ($x $y $theta) (position robot)),
(*=* ($result $status) (init-system $y)).

Example of a form which is not a multi variable special action (it must be a
list of variables, not terms):
(*=* (T NIL T) (confirm-three-responses $y $z $w)).

4.3.4 Text OPs

Text OPS have been introduced in recent versions of OPRS to allow user to write
OP as standard programing language. Text OPs language provide standard if-
then-else, while, do-while, goto, break construct, as well as parallel operator.
See [Grammar Used in the OPRS Development Environment], §K, page 371 for
a description of this grammar. Like action OP and graphic OP, they can be
traced.

4.3. EXECUTION PART 71

Figure 4.12: Meta Factorial Text OP

General Presentation of the Text OPs

The best way to illustrate text OPs is to study some examples.
The following file presents text OPs which implement factorial.
The OP on Figure 4.12 is the OP Editor representation of the Meta Factorial

presented above.
The following file presents text OP which implement fibonacci.
The OP on Figure 4.13 is the OP Editor representation of the Fibonacci

presented above.
Text OPs are editable with the op-editor, but can also be created with your

preferred text editor. In fact, the op-editor does not store any position, nor text
filling information about these OPs and will not allow you to move the fields of
a text OP.

One can mix graph op and text OP in the same OP file. Text OPs are put in
OP file with the same extension file ‘.opf ’. As long as all the OPs in a OP files
are text OPs you can edit this file emacs or your prefered text editor. However
if at least one OP in a OP file is a graphic OP, then you can still grab or edit
the text OP in this file, but it is more difficult, and it is at your own risk.

The body field of a text OP cannot be empty... it must at least contain the
empty instruction list, i.e. ().

Actions OP created under the OP Editor are by default considered as graphic

72 CHAPTER 4. OP SYNTAX AND SEMANTICS

Figure 4.13: Fibonacci Text OP

OP.
There is one major advantage in editing text OP in the OP Editor, the

lexical and syntaxic parsing is continuously done. Otherwise, if you edit them
under Emacs, you will have to wait until you load them in the OP-Editor or
OPRS to check them.

Text OP selected for graphic trace, show up on the screen, and you can see
the body, the other interesting fields, adn hilighted the currently posted goals.

IF-THEN-ELSE Instruction

The IF-THEN-ELSE instruction and IF-THEN-ELSEIF... instructions are stan-
dard branching operations.

The syntax is the following:

if_inst: (IF if_part_inst)

if_part_inst: gtexpr list_inst

| gtexpr list_inst ELSE list_inst

| gtexpr list_inst ELSEIF if_part_inst

list inst is a possibly empty sequence of instruction.
here is an example of use:

(IF (? (PREFER-ITERATIVE))

;;; Look for the one which has property recursive

(IF (? (PROPERTY-P RECURSIVE (FIRST $X)))

(! (INTENDED-OP (SECOND $X)))

ELSE

(! (INTENDED-OP (FIRST $X)))

)

ELSEIF (? (PREFER-RECURSIVE))

;;; Look for the one which has property recursive

4.3. EXECUTION PART 73

(IF (? (PROPERTY-P RECURSIVE (FIRST $X)))

(! (INTENDED-OP (FIRST $X)))

ELSE

(! (INTENDED-OP (SECOND $X)))

)

ELSE

;;; We do not have any preference...

;;; Choose randomly

(! (INTENDED-OP (SELECT-RANDOMLY $X)))

(! (PRINT "Intending randomly"))

)

WHILE Instruction

The WHILE instruction is a standard while operations.
The syntax is the following:

while_inst: (WHILE gtexpr list_inst)

list inst is a possibly empty sequence of instruction.
here is an example of use:

(WHILE (? (> @TMP 1))

(! (= @RES (* @RES @TMP)))

(! (= @TMP (- @TMP 1)))

)

One can use the BREAK instruction to make a local exit of the while loop.

DO-WHILE Instruction

The DO-WHILE instruction is a standard do-while.
The syntax is the following:

do_inst: (DO list_inst WHILE gtexpr)

list inst is a possibly empty sequence of instruction.
here is an example of use:

(DO

(! (FOO $X))

(// ((! (BAR $Y)) (! (BOO $Z)))

((! (BAR $A)) (! (BOO $W)))

((! (BAR $B)) (! (BOO $U)))

)

WHILE (? (> (X-OF $Y) 35)))

Here also, one can use BREAK to exit the loop.

74 CHAPTER 4. OP SYNTAX AND SEMANTICS

Parallel Instruction

The // instruction executes all the branches in parallel.

The syntax is the following:

par_inst: (// <par_list_inst>*)

par_list_inst: (list_inst)

list inst is a possibly empty sequence of instruction.

here is an example of use:

(// ((! (= @TMP $N))

(! (=@FOO @TMP))

)

((! (= @RES 1))

)

)

GOTO-LABEL Instruction

The GOTO-LABEL instruction is a standard goto operations.

The syntax is the following:

goto_inst: GOTO id

label_inst: LABEL id

here is an example of use:

(;;; comment

LABEL test

(! (foo @x))

(! (= @x (- @x 1)))

(IF (? (> @x 0))

GOTO test

ELSE

GOTO fin)

LABEL fin

)

Comment Instruction

Although if is not really an instruction, comments can only be used and pre-
sented while they are present in an instruction position. As noted on the exam-
ples above, comments are presented with one or more semicolon ; in instructions
sequences.

4.4. PROCEDURE AND EXPRESSION COMPILATION AND PARSING75

4.4 Procedure and Expression Compilation and
Parsing

Before being executed, procedures are compiled. This is done automatically
when you load a OP file in an OPRS Kernel. Most of the time, this compilation
goes without any problem (because procedures have been created with the OP
Editor which is fairly rigorous regarding the syntax allowed for a OP). However,
one could imagine that, for some reason, a OP may not be parsable by the OPRS
Kernel and could be rejected by the OP compiler.

In any case, the OP compiler does more than just syntax checking. Some
semantic checking is done too. For example, it can check that all the symbols
you use have been declared. It can also check that the actions which appear in
the action part of an Action OP are indeed declared as evaluable functions. The
compilation and syntax checking does not only apply to procedure themeselves,
but also to expression parsed by the kernel.

4.4.1 Action Checking

If a symbol is considered to be associated to an action definition (because it
appears as an action call in an action part of a OP), then the system will check
that such action has been defined (linked) in the kernel. A warning will be issued
if no definition can be found for this action. Special action can be defined as
evaluable functions too. In other words, if you have declared the function FOO

as an evaluable function, you can call it in place of a special action. The system
will also check that the number of arguments of the call is consistent with the
number of arguments of the declaration.

Part of this checking can be turned on or off using the set action on|off

command (see [OPRS Kernel Compiler/Parser Option Commands], §2.8, page
36).

4.4.2 Predicate Checking

Predicates are also subject to some checking at parsing time. First, if the pred-
icate checking is on, then the system will check that the predicate has been
declared before its first occurrence in an expression. Predicate can be declared
with a declare predicate command or one of the declare ff, declare be,
declare op predicate. Note that an evaluable predicate is automatically de-
clared (see [OPRS Kernel Declaration Commands], §2.9, page 37). This pred-
icate checking can be turned on or off using the set predicate on|off com-
mand (see [OPRS Kernel Compiler/Parser Option Commands], §2.8, page 36).
Moreover, the number of arguments of predicates is now fixed. Therefore, when-
ever the system encounters a predicate for the very first time, it will set its
number of argument and will then check that subsequent use of this predicate
is done with the same number of argument.

76 CHAPTER 4. OP SYNTAX AND SEMANTICS

4.4.3 Function Checking

Functions are also subject to some checking at parsing time. First, if the function
checking is on, then the system will check that the function has been declared
before its first occurrence in an expression. Function can be declared with a
declare function command. Note that an evaluable function is automati-
cally declared (see [OPRS Kernel Declaration Commands], §2.9, page 37). This
checking can be turned on or off using the set function on|off command
(see [OPRS Kernel Compiler/Parser Option Commands], §2.8, page 36).

4.4.4 Symbol Checking

While compiling OP and parsing expresion, the system will check for new sym-
bol. In other words¡, if it encounters a symbol for the first time, a warning will
be displayed to inform the user of this newly used symbol. This facility can be
disabled but it is usually very useful to catch typos... Nevertheless, it is advised
to create a symbol file, (containing declare id commands for each symbol you
want to declare in your application). Note that all symbols declared by other
means.

This checking can be turned on or off using the set symbol on|off com-
mand (see [OPRS Kernel Compiler/Parser Option Commands], §2.8, page 36).

Chapter 5

Database

The content of the OPRS database represents the current beliefs of the system.
Some of these beliefs are provided initially by the system user. Typically, they
include facts about static properties of the application domain, such as the
structure of some subsystems or the physical laws that must be obeyed by
certain mechanical components. Other beliefs are derived by OPRS itself as it
executes its OPs. They are typically current observations about the world or
conclusions derived by the system from these observations, and they may change
over time. For example, at some times OPRS may believe that the pressure of
a tank is within acceptable operating limits, at other times not. Updates to the
database therefore necessitate the use of consistency maintenance techniques.

The database is one of the most important components of the OPRS Kernel.
Its role is basically to “remember” which expressions or evaluable predicates are
true and, to give the expressions back upon consultation. This consultation can
be done by the user with a consult command (see [OPRS Kernel Database
Commands], §2.2, page 30), or by the kernel itself when it tries to execute a
procedure (see [Procedure Execution and Run Time], §7, page 109).

On top of these basic functionalities, several related functionalities are pro-
vided by the database and are very often critical in the application using OPRS.
They are all presented in this chapter.

The database uses a term indexing mechanism [Sti87], which has been ex-
tended in various ways to handle some specific operations, and allows consulta-
tion in constant time.

5.1 Database File Format

The internal format of the database is of no interest to the end user. How-
ever, a user may need to load a certain number of facts at once. This can be
done by issuing a series of conclude commands (see [OPRS Kernel Database
Commands], §2.2, page 30), but this can be rather tedious. . . More easily, this
can be done by loading a database file (see [OPRS Kernel Loading Commands],

77

78 CHAPTER 5. DATABASE

§2.4, page 32).
The database file format is rather simple. It is a list of expressions. As in

Lisp, any line starting with a semicolon ; is considered as a comment.
Here is an example of such a file:

;;; This is a comment

(

(foo a b)

(bar 23 (+ 4 5))

(boo (f g h) "this is a string" 23.44)

(foo a c)

(bar 3 (+ 74 5))

(foo (f g h) "this is a string" 23.44)

(fo a b)

(ba 23 (+ 4 5))

(bo (f g h) "this is a string" 23.44)

)

It is recommended to use the ‘.db’ extension for these database files.
Note that you need to declare any closed world predicate and functional

fact before you load a database containing facts referring to them. Evaluable
functions and predicates are defined beforehand in the kernel at link time, so
no precaution has to be taken for them.

5.2 Unification

Although not specific to the database, the unification used in the OPRS Kernel
is mostly used in database operations (but not only in database operations).
For example, when you consult an expression such as (foo $x 6), then at
some point the $x variable may be unified to a term if necessary.

The unification mechanism considers two kinds of variables (see [Variables],
§3.1, page 45), logical variables and program variables. Keep in mind that logical
variables are bound once onward and stay bound on a successful execution (this
is similar to PROLOG variable). However program variables, which are provided
for convenience, can be rebound at any time.

Last, but not least, it is in the unification (but not only in the unification)
that evaluable functions (see [Evaluable Functions], §6, page 95), are evaluated.
This means that a term containing an evaluable function is evaluated whenever
one attempts to unify it. It used to be that the evaluation of terms appearing in
a goal were delayed until unification was required. Recent versions of the kernel
still allow this mechanism, but it is not the default anymore. Now to prevent
the evaluation of terms at posting time, you need to surround the term in a
quote form (see [Current and Quote], §10.7, page 141).

Nevertheless, if a term containing an evaluable function is in the scope of
a quote, this can lead to a very peculiar behavior particularly if this evalu-
able function runs with considerable overhead, or if it has side effects (such as

5.3. CONCLUDE 79

printing). You may get the feeling that your function is evaluated more than
it should be. To avoid this mechanism, you can use the current mechanism in
the scope of the quote.

5.3 Conclude

The conclude operation is the operation by which you add something to the
database. Only expressions, without variables, are allowed. All the evaluable
functions found in the expression are evaluated and the result is concluded, not
the original expression. For example, if you conclude (foo (+ 1 2) (- 5 4)),
then (foo 3 1) ends up in the database.

You can conclude facts with negation, (~ (foo 3 1)), for example. More-
over, when an expression is concluded, its negation, if found, is automatically
retracted from the database.

Of course, concluding the negation of closed world predicates is a ıno-op (see
[Closed World Predicates], §5.5, page 81). Similarly, concluding an evaluable
predicate produces a warning. For example, if you conclude (> 3 1), the system
reports a non fatal error, even if the expression is true.

5.4 Consultation

One can consult general expression (see [General Expressions], §3.6, page 52),
with variables. Conjunctions and disjunctions are treated, as expected, with
the variables having scope over the whole general expression. In (& (foo $x

6) (bar $x 7)), the $x variable is the same in both expressions. If you do not
want this behavior, you should use two different variables. When a disjunction
is consulted, all the possible sub general expressions which are satisfied are
returned. If you have (foo 1 6) and (bar 1 7) in the database, and consult
(|| (foo 1 6) (bar 1 7)), you get three possible solutions: (|| (foo 1 6)

(bar 1 7)), (|| (bar 1 7)) and (|| (foo 1 6)). One can easily imagine
that consulting a big disjunction with lot of simple true expressions leads to
a huge number of solutions. For example, N disjunctions, each being true for
M values, would lead to (M**N)!/N! solutions! No need to say that extreme
caution should be exerted when writing disjunction in OPs.

When you consult a general expression in the database, the kernel returns
a list of facts. If the appropriate flag is on (trace db frame on|off) (see
[OPRS Kernel Trace Commands], §2.5, page 33), it will return each fact with
the frames which, when applied to the consulted fact, make each returned fact
be true. Note that for internal consultation, facts themselves are of little if no
interest for the kernel. Only the frame is important. The deepest frame in the
hierarchy is the frame in which the fact you consult has been created (most
likely an empty frame with the variables present in the consulted gexpression).

If you have (foo 1 6) and (foo 2 6) in your database, and you consult
(foo $x 6), then it returns something like:

80 CHAPTER 5. DATABASE

FOO> conclude (foo 1 6)

The expression:(FOO 1 6) has been concluded in the database.

FOO> conclude (foo 2 6)

The expression:(FOO 2 6) has been concluded in the database.

FOO> consult (foo $x 6)

The user consultation of: (FOO {$X->(Term *)NULL } 6)

gives the following result:

(FOO 2 6)

(FOO 1 6)

FOO> trace db frame on

FOO> consult (foo $x 6)

The user consultation of: (FOO {$X->(Term *)NULL } 6)

gives the following result:

[(FOO 2 6) { 0 ([{$X->(Term *)NULL}>>2])

{ ({$X->(Term *)NULL}) 1 () {} } }]

[(FOO 1 6) { 0 ([{$X->(Term *)NULL}>>1])

{ ({$X->(Term *)NULL}) 1 () {} } }]

Note that the format of the returned information is a list of:

fact

or

[fact frame-in-which-the-fact-is-true]

depending of the db frame flag (see [OPRS Kernel Trace Commands], §2.5, page
33).

Multiple frames are returned when the consultation returns more than one
possible value. Moreover, if the consultation leads to a tree search because of
a conjunction or a disjunction in the consulted gexpression, then you get more
than one level of nested frames.

FOO> conclude (foo a b)

The expression:(FOO A B) has been concluded in the database.

FOO> conclude (bar b c)

The expression:(BAR B C) has been concluded in the database.

FOO> conclude (bar b d)

The expression:(BAR B D) has been concluded in the database.

FOO> consult (& (foo $x $y) (bar $y $z))

The user consultation of:

5.5. CLOSED WORLD PREDICATES 81

(& (FOO {$X->(Term *)NULL } {$Y->(Term *)NULL })

(BAR {$Y->(Term *)NULL } {$Z->(Term *)NULL }))

gives the following result:

[(& (FOO A B) (BAR B C))

{ 0 ([{$Z->(Term *)NULL } >>C])

{ 0 ([{$Y->(Term *)NULL } >>B] [{$X->(Term *)NULL } >>A])

{ 1 ()

{} } } }]

[(& (FOO A B) (BAR B D))

{ 0 ([{$Z->(Term *)NULL } >>D])

{ 0 ([{$Y->(Term *)NULL } >>B] [{$X->(Term *)NULL } >>A])

{ 1 ()

{} } } }]

FOO> consult (|| (foo $x $y) (bar $y $z))

The user consultation of:

(|| (FOO {$X->(Term *)NULL } {$Y->(Term *)NULL })

(BAR {$Y->(Term *)NULL } {$Z->(Term *)NULL }))

gives the following result:

[(|| (BAR B C))

{ 0 ([{$Z->(Term *)NULL } >>C] [{$Y->(Term *)NULL } >>B])

{ 1 ()

{} } }]

[(|| (BAR B D))

{ 0 ([{$Z->(Term *)NULL } >>D] [{$Y->(Term *)NULL } >>B])

{ 1 ()

{} } }]

[(|| (FOO A B))

{ 0 ([{$Y->(Term *)NULL } >>B] [{$X->(Term *)NULL } >>A])

{ 1 ()

{} } }]

[(|| (FOO A B) (BAR B C))

{ 0 ([{$Z->(Term *)NULL } >>C])

{ 1 ()

{} } }]

[(|| (FOO A B) (BAR B D))

{ 0 ([{$Z->(Term *)NULL } >>D])

{ 1 ()

{} } }]

5.5 Closed World Predicates

A closed world predicate, in short CWP, is a mechanism by which one can
specify what to do in the absence of information about some predicate. In
OPRS Kernel database, facts are known to be true if they are in the database

82 CHAPTER 5. DATABASE

and are considered false if they are absent. As a consequence, in the absence
of any information about an expression and its negation. Both are consid-
ered to be false. However, in many situations, the absence of some informa-
tion is considered as if it were false. For example, assume you have built a
database containing information about flights between cities. If your database
does not contain the fact that there is a direct flight between Toulouse and
San Francisco, most likely, it means that no such flight exists. Therefore, if
you ask consult (direct-flight TLS SFO), it returns FALSE. But if you
ask consult (~ (direct-flight TLS SFO)), then it also returns FALSE by
default, although it is TRUE. In fact, one solution would be to enter all the pos-
sible flights which do not exist, by adding explicitly (~ (direct-flight TLS

SFO)) and all the other ones. This is tedious and will clutter your database
with unnecessary information.

The solution to this problem in OPRS Kernel is to declare the predicate
direct-flight as CWP with the following command: declare cwp direct-flight

(see [OPRS Kernel Database Commands], §2.2, page 30). It means automati-
cally that any consultation of the negation of this predicate (such as consult (~

(direct-flight TLS SFO))) returns TRUE if the positive ((direct-flight
TLS SFO)) is not in the database.

When you declare evaluable predicate (see [Evaluable Predicates], §5.8, page
87), you can also specify if they are CWP or not. All the evaluable predicates
predefined in the kernel are CWP.

A side effect of this declaration is that any attempt to conclude the negation
of a CWP is ignored by the database. Indeed, what would be the point of
concluding (~ (direct-flight TLS SFO)) as it is true anyway (providing of
course that (direct-flight TLS SFO) is not in the database).

Here are some examples to illustrate the CWP mechanism:

FOO> consult (foo a)

The user consultation of: (FOO A) gives the following result:

NULL

FOO> consult (~ (foo a))

The user consultation of: (~ (FOO A)) gives the following result:

NULL

FOO> declare cwp foo

FOO> consult (foo a)

The user consultation of: (FOO A) gives the following result:

NULL

FOO> consult (~ (foo a))

The user consultation of: (~ (FOO A)) gives the following result:

[(~ (FOO A)) { 1 () {} }]

5.5. CLOSED WORLD PREDICATES 83

FOO> consult (~ (foo $x))

The user consultation of:

(~ (FOO {$X->(Term *)NULL }))

gives the following result:

[(~ (FOO {$X->(Term *)NULL })) { 1 () {} }]

FOO> conclude (foo a)

The expression:(FOO A) has been concluded in the database.

FOO> consult (foo a)

The user consultation of:

(FOO A)

gives the following result:

[(FOO A) { 0 () { 1 () {} } }]

FOO> consult (foo $x)

The user consultation of:

(FOO {$X->(Term *)NULL })

gives the following result:

[(FOO A)

{ 0 ([{$X->(Term *)NULL } >>A]){ 1 () {} } }]

FOO> consult (~ (foo a))

The user consultation of:

(~ (FOO A))

gives the following result:

NULL

FOO> consult (~ (foo $x))

The user consultation of:

(~ (FOO {$X->(Term *)NULL }))

gives the following result:

NULL

FOO> conclude (~ (foo a))

The expression:(~ (FOO A)) has been concluded in the database.

FOO> consult (foo a)

The user consultation of: (FOO A) gives the following result:

NULL

FOO> consult (foo $x)

The user consultation of: (FOO {$X->(Term *)NULL })

gives the following result:

NULL

84 CHAPTER 5. DATABASE

FOO> consult (~ (foo a))

The user consultation of: (~ (FOO A))

gives the following result:

[(~ (FOO A)) { 1 () {} }]

FOO> consult (~ (foo $x))

The user consultation of: (~ (FOO {$X->(Term *)NULL }))

gives the following result:

[(~ (FOO {$X->(Term *)NULL })) { 1 () {} }]

Note the absence of binding on the consultation of CWP expression with
variables.

5.6 Functional Facts

Functional facts are predicates which can be expressed as a function of a subset
of their arguments which gives the rest of their arguments as a result. In some
cases, there is only one possible result:
For example: (factorial 5 120) (because factorial(5) => 120). This re-
sult being unique (factorial 5 is always 120), there is no reason a priori to
make any bookkeeping on it. But in some situations or applications, the result
is not unique and can change over time. For example:
(pressure tk1 245) (indeed, we can express the fact that pressure(tk1) =>

245).
Most likely, there is only one possible value of pressure at one time, therefore
any previously recorded value for tk1 should be discarded. In this case, if we
had received (pressure tk1 250) few minutes (or seconds) ago, we must re-
move it from the database, otherwise the consultation of (pressure tk1 $x)

would return both facts, which is wrong.

You can certainly write your own procedure to clean up automatically. How-
ever, the OPRS Kernel provides an automatic mechanism to handle this type
of cleanup. It is called functional fact, and you can declare any predicate as a
functional fact with the following command: declare ff predicate position

(see [OPRS Kernel Declaration Commands], §2.9, page 37). predicate is the
name of the predicate. position is the argument position at which the ar-
gument becomes the result of the functional evaluation. For example, in the
pressure example above, you would invoke: declare ff pressure 1.

For a predicate like:

5.6. FUNCTIONAL FACTS 85

(position-robot building-E),
it is
declare ff position-robot 0,
because
position-robot() =>building-E.
For a predicate like
(connection-status paris toulouse up),
it is
declare ff connection-status 2,
because
connection-status(paris, toulouse) => up.

This mechanism requires the order of the arguments to be organized in such
a way that the value arguments of the functional evaluation come after the
arguments required for the evaluation. If you said (pressure 250 tk1), then
you cannot use this mechanism (or we would have to use position pattern to
declare the functional facts).

Note that in this section, we mention that the predicate is considered as
functional, which does not mean it is evaluable (see [Evaluable Predicates],
§5.8, page 87), but merely that it could be expressed as functional.

All functional fact predicates are also considered as closed world predicate
(see [Closed World Predicates], §5.5, page 81).

Many users have asked us to extend this mechanism to an history mechanism.
You could then declare that you want to keep the last five values of a functional
fact. This notion of history is heavily linked to the notion of time stamping the
information stored in the database. As usual, there are pros and cons of such
a mechanism. However, we are currently considering adding it. As of now, you
need to do the bookkeeping yourself when you need more previous values, to do
trend analysis for example.

Here are some examples to illustrate the functional fact mechanism:

FOO> consult (foo $x)

The user consultation of: (FOO {$X->(Term *)NULL })

gives the following result:

NULL

FOO> conclude (foo a)

The expression:(FOO A) has been concluded in the database.

FOO> consult (foo $x)

The user consultation of: (FOO {$X->(Term *)NULL })

gives the following result:

[(FOO A) { 0 ([{$X->(Term *)NULL } >>A])

{ 1 () {} } }]

FOO> conclude (foo b)

The expression:(FOO B) has been concluded in the database.

86 CHAPTER 5. DATABASE

FOO> consult (foo $x)

The user consultation of: (FOO {$X->(Term *)NULL })

gives the following result:

[(FOO A) { 0 ([{$X->(Term *)NULL } >>A])

{ 1 () {} } }]

[(FOO B) { 0 ([{$X->(Term *)NULL } >>B])

{ 1 () {} } }]

FOO> declare ff foo 0

FOO> conclude (foo c)

The expression:(FOO C) has been concluded in the database.

FOO> consult (foo $x)

The user consultation of: (FOO {$X->(Term *)NULL })

gives the following result:

[(FOO C) { 0 ([{$X->(Term *)NULL } >>C])

{ 1 () {} } }]

FOO> conclude (foo d)

The expression:(FOO D) has been concluded in the database.

FOO> consult (foo $x)

The user consultation of: (FOO {$X->(Term *)NULL })

gives the following result:

[(FOO D) { 0 ([{$X->(Term *)NULL } >>D])

{ 1 () {} } }]

5.7 Basic Events

Basic events are used to handle facts which are “transients”, i.e. facts which
must be noticed by the OPRS Kernel but should not be kept in the database.
Keep in mind that any fact or message which is received by a OPRS Kernel is
stored in the database by default.

For example, you may want your application to notice facts such as (alarm),
but do not want it to remember this fact. You can declare the alarm predicate as
a basic event. To do so, you need to issue the declare be alarm (see [OPRS
Kernel Declaration Commands], §2.9, page 37), command in this kernel (or
put it in the include file which will be loaded in this kernel). Similarly, you
may want your application to monitor some pressure values but do not want
to keep these values (even the last one). You could then issue the command
declare be pressure (assuming that the pressure predicate is used to carry
this information).

Note that you can declare any predicate as a basic event, and some predefined

5.8. EVALUABLE PREDICATES 87

predicates are actually basic event predicates. Here is the list of the predicates
which are, by default, declared as basic events in the kernel.
SOAK,
APPLICABLE-OPS-FACT,
FACT-INVOKED-OPS,
DB-SATISFIED-GOAL,
APPLICABLE-OPS-GOAL,
GOAL-INVOKED-OPS, FAILED-GOAL,
FAILED,
REQUEST,
ACHIEVED,
INTENTION-WAKE-UP,
READ-RESPONSE-ID,
READ-RESPONSE.

You can undeclare a basic event with the command: undeclare be (assum-
ing it was declared as a basic event).

5.8 Evaluable Predicates

OPRS provides mechanisms to define, incorporate and use evaluable predicates.
By default there are a number of predefined evaluable predicates. However, the
user can add its own definition of evaluable predicates, and even redefine the
one which are defined by default in the kernel.

Evaluable predicates are used whenever you want to have a predicate to cor-
respond to some C code (or code linked in the OPRS Kernel), which evaluation
describes the extension of the predicate.

Evaluable predicates are evaluated at the database level (which explain why
we present them in this Chapter). In fact, from the final user point of view,
the mechanism is completely transparent, they look like standard predicates.
The database somehow “recognizes” them as being evaluable, evaluates their
arguments and the predicates themselves instead of looking in the expression
table . Evaluable predicates can be consulted as well as other predicates.

However, consulting (> (+ 3 4) (- 3 4)) in the database (with a the
consult command), evaluates (+ 3 4) and (- 3 4) which respectively returns
7 and -1 (see [Evaluable Functions], §6, page 95, for more on this subject). Then,
it evaluates the (> 7 -1) and it returns TRUE.

One can see from this mechanism that it is not possible to use an evaluable
predicate in an environment where the terms are undefined (or unbound). It
is usually meaningless, and very often an error, to consult evaluable predicates
with unbound variables. Such as:
(> 4 $x) when $x is unbound. In fact the > predicate will print an error
message.

Evaluable predicates can be used whenever a predicate is appropriate, how-
ever, you cannot use evaluable predicates in an Invocation Part. If you use a
predicate in an Invocation Part, it will not be able to trigger the relevance of

88 CHAPTER 5. DATABASE

this OP as any predicate of the Invocation Part should.

5.8.1 Predefined Evaluable Predicates

All the evaluable predicates return a PBoolean, i.e. TRUE or FALSE (see [Im-
portant Constants], §G.1.3, page 336), not a Term. Besides, all the evaluable
predicates take a TermList as an argument. Whenever it is possible, we will
specify the number of arguments and the type of the Term for each element.

To help the reader understand the descriptions for the evaluable predicates
in the following section, consider the > (greater than) evaluable predicate:

> Evaluable Predicate

PBoolean > (LONG LONG or INTEGER or FLOAT) is the greater than
function. It is defined for two terms (subsequent terms in the list
are ignored). It can compare any numbers (INTEGER or FLOAT).

The PBoolean before the predicate name > is the type returned by the evalu-
able predicate. The (INTEGER or FLOAT INTEGER or FLOAT) after the predi-
cate name specifies the type of the object contained in the TermList which is
the argument to the > predicate. In this case, it means at least two arguments
which must be FLOAT or INTEGER Term *. See [liblist.a library], §G.3, page 346,
for examples of how to access different types of objects contained in TermList,
as well as [How to Define your Own Evaluable Predicates], §5.8.2, page 92.

Evaluable predicates can be classified in different categories which are pre-
sented in the following section.

Arithmetic Evaluable Predicates

These predicates deal with numbers.
> Evaluable Predicate

PBoolean > (INTEGER or FLOAT INTEGER or FLOAT) is the greater
than function. It is defined for two terms (subsequent terms in the
list are ignored). It can compare any numbers (INTEGER or FLOAT).

>= Evaluable Predicate

PBoolean >= (INTEGER or FLOAT INTEGER or FLOAT) is the greater
than or equal function. It is defined for two terms (subsequent terms
in the list are ignored). It can compare any numbers (INTEGER or
FLOAT).

< Evaluable Predicate

PBoolean < (INTEGER or FLOAT INTEGER or FLOAT) is the less
than function. It is defined for two terms (subsequent terms in the
list are ignored). It can compare any numbers (INTEGER or FLOAT).

<= Evaluable Predicate

5.8. EVALUABLE PREDICATES 89

PBoolean <= (INTEGER or FLOAT INTEGER or FLOAT) is the less
than or equal function. It is defined for two terms (subsequent terms
in the list are ignored). It can compare any numbers (INTEGER or
FLOAT).

OP Instance Related Evaluable Predicates

These predicates deal with OP Instance and the properties of the OP they are
an instance of.

PROPERTY-P Evaluable Predicate

PBoolean PROPERTY-P (ATOM property,TT OP INSTANCE) is the
function used to check if a property is defined. It is defined for two
terms, a term symbol, the property name, and a TT OP INSTANCE

(subsequent terms in the list are ignored). It returns TRUE if the
specified property is non-nil for the specified OP Instance. Note
that this does not return the value of the property, but merely if
it is defined and non-nil. If you want to access the value of the
property, use the evaluable function: property-of.

NOT-AN-INSTANCE-OF-ME Evaluable Predicate

PBoolean NOT-AN-INSTANCE-OF-ME (TT OP INSTANCE) is defined
for 1 term a TT OP INSTANCE. It returns TRUE if the OP, in which
this predicate appears in the invocation, or context part, is not the
OP from which the op-instance parameter is an instance. This is very
useful for Meta level OPs to prevent them of looping on themselves...

IS-FACT-INVOKED Evaluable Predicate

PBoolean IS-FACT-INVOKED (TT OP INSTANCE) is defined for 1 term
a TT OP INSTANCE. It returns TRUE if the op-instance parameter is
invoked by a fact.

IS-GOAL-INVOKED Evaluable Predicate

PBoolean IS-GOAL-INVOKED (TT OP INSTANCE) is defined for 1 term
a TT OP INSTANCE. It returns TRUE if the op-instance parameter is
invoked by a goal.

Time Related Evaluable Predicates

These predicates deal with time and elapsed time.
ELAPSED-TIME Evaluable Predicate

PBoolean ELAPSED-TIME (INTEGER t1, INTEGER t2) is the pred-
icate used to check if the number of seconds t2 have elapsed since t1.
It is mainly used in a construct such as (^ (elapsed-time (time)

5)).

90 CHAPTER 5. DATABASE

ELAPSED-MTIME Evaluable Predicate

PBoolean ELAPSED-MTIME (INTEGER t1, INTEGER t2) is the pred-
icate used to check if the number of milliseconds t2 have elapsed since
t1. It is mostly used in a construct such as (^ (elapsed-mtime

(mtime) 5)). Keep in mind that if the OPRS Kernel has noth-
ing to do, except checking this predicate, then it will wake up every
main loop pool sec * 1000000 + main loop pool usec micro sec-
onds (this value can be reduced if needed) (see [Important Variables],
§G.1.2, page 334).

‘Due to possible overlapping reasons, do not use this predi-
cate with big values of t2. For values greater than 10 000 or
so, use elapsed-time and time instead which count seconds’.

Miscellaneous Evaluable Predicates

These miscellaneous predicates deal with various objects and types.
= Evaluable Predicate

PBoolean = (AnyTerm AnyTerm) is the assignment predicate. This
predicate used to be satisfied by a OP, it is now defined as an evalu-
able predicate. (Note: that you can still define it as a OP). It is
defined for two terms. It returns TRUE if it manage to assign (or
unify) the value of the second term to the first term. Most of the
time, the first term is a variable.

== Evaluable Predicate

PBoolean == (AnyTerm AnyTerm) is the unification predicate. This
predicate used to be satisfied by a OP, it is now defined as an evalu-
able predicate. (Note: that you can still define it as a OP). It is
defined for two terms. It returns TRUE if it managed to unify the
second term with the first term. One advantage of having this pred-
icate defined as an evaluable predicate is that you can use it in com-
plex statement such as: (? (|| (== $x (foo a b)) (== (foo a

b) (foo $x $y))))

NULL Evaluable Predicate

PBoolean NULL (LISP LIST) is the Lisp List NULL function. It is
defined for one term (subsequent terms in the list are ignored). It
returns TRUE if the Lisp List is empty.

NULL CAR Evaluable Predicate

PBoolean NULL CAR (Any Term) is the Lisp List NULL function.
It is defined for one term. It returns TRUE if the Term is NULL, as
extracted with a CAR from an empty Lisp list.

5.8. EVALUABLE PREDICATES 91

MEMQ Evaluable Predicate

PBoolean MEMQ (Any Term, LISP LIST) returns TRUE if the Any

Term is in the codeLISP LIST.

NULL C Evaluable Predicate

PBoolean NULL C (OPRS LIST) is the C List NULL function. It is
defined for one term (subsequent terms in the list are ignored). It
returns TRUE if the OPRS LIST is empty.

EQUAL Evaluable Predicate

PBoolean EQUAL (TermList terms) is the equal terms function.
It is defined for two terms (subsequent terms in the list are ignored).
It returns TRUE if both terms are equal.

BOUNDP Evaluable Predicate

PBoolean BOUNDP (Any Term) It is defined for one term (subse-
quent terms in the list are ignored). It returns FALSE if the term is
a VARIABLE and it is not bound. Return TRUE in all other cases.

NUMBERP Evaluable Predicate

PBoolean NUMBERP (Any Term) It is defined for one term (subse-
quent terms in the list are ignored). It returns TRUE if the term is a
FLOAT, an INTEGER or a LONG LONG, and returns FALSE otherwise.

INTEGERP Evaluable Predicate

PBoolean INTEGERP (Any Term) It is defined for one term (subse-
quent terms in the list are ignored). It returns TRUE if the term is
an INTEGER, and returns FALSE otherwise.

FLOATP Evaluable Predicate

PBoolean FLOATP (Any Term) It is defined for one term (subse-
quent terms in the list are ignored). It returns TRUE if the term is a
FLOAT and returns FALSE otherwise.

LONG-LONGP Evaluable Predicate

PBoolean LONG-LONGP (Any Term) It is defined for one term (sub-
sequent terms in the list are ignored). It returns TRUE if the term is
a LONG LONG, and returns FALSE otherwise.

STRINGP Evaluable Predicate

PBoolean STRINGP (Any Term) It is defined for one term (subse-
quent terms in the list are ignored). It returns TRUE if the term is a
STRING, and returns FALSE otherwise.

92 CHAPTER 5. DATABASE

CONSP Evaluable Predicate

PBoolean CONSP (Any Term) It is defined for one term (subse-
quent terms in the list are ignored). It returns TRUE if the term
is a LISP LIST, and returns FALSE otherwise.

ATOMP Evaluable Predicate

PBoolean ATOMP (Any Term) It is defined for one term (subsequent
terms in the list are ignored). It returns TRUE if the term is a ATOM,
and returns FALSE otherwise.

5.8.2 How to Define your Own Evaluable Predicates

It is fairly easy to define your own evaluable predicates. To do so, you have
to write a C function which takes a list of terms (TermList) as arguments and
returns a PBoolean (TRUE or FALSE). Using the list library functions, you can
then access the element of the list and compute the Boolean value.

You will find various examples of user-defined evaluable predicates in the
file: ‘user-ev-predicate.c’.

PBoolean my_predicate(TermList tl)

{

Term *t1, *t2;

t1 = (Term *)get_list_pos(tl, 1);

t2 = (Term *)get_list_pos(tl, 2);

if (my_fancy_condition(t1, t2)) return TRUE;

else return FALSE;

}

You can define as many evaluable predicates as you want. You need to
declare them in the kernel, as well as their external names (as it will ap-
pear in the OPs), the number of arguments they take and whether they are
closed world predicates or not. This declaration is made in the body of the
declare user eval pred function which is called upon start up of the kernel.

void declare_user_eval_pred(void)

{

make_and_declare_eval_pred("EXTERNAL_NAME", my_predicate, 2, TRUE);

return;

}

make and declare eval pred Kernel User Function

void make and declare eval pred (Predicat name, PFB pred, int

ar, PBoolean cwp) is used to declare the evaluable predicate. You

5.9. OP PREDICATES 93

have to specify the predicate name, the C function which implements
it, the arity of this predicate and a boolean to indicate if the predi-
cate is a closed world predicate.

declare user eval pred Kernel User Function

void declare user eval pred (void) is the function in which
you must put all the calls to make and declare eval pred. It is
called upon start-up by the kernel and builds the appropriate ta-
ble to map the evaluable predicate names and the corresponding C
functions. Note that the user can redefine the predefined evaluable
predicates by using their names. This can be useful for example if
you want to overload their definitions.

5.9 OP Predicates

OP predicates cannot be satisfied in the database, they can only be satisfied
by OP execution. Keep in mind that whenever the system posts a goal, it
will check if this goal is already satisfied in the database. There exists a num-
ber of predicates that can only be satisfied by OP execution (example print,
send-message, execute-command, read-inside, etc.), for them, there is no
need to check if they are satisfied or not in the database, so they should be
declared as OP predicate.

As a consequence, consulting expressions in which the predicate is a OP
predicate in the database result as a non operation. Similarly, if you attempt
to conclude a OP predicate in the database, the system will print a warning.

94 CHAPTER 5. DATABASE

Chapter 6

Evaluable Functions

OPRS provides mechanisms to define, incorporate and use evaluable functions.
By default there are a number of predefined evaluable functions. However, you
can add a definition of evaluable functions, and even redefine the ones which are
defined by default in the kernel. Actions (which have similitude with evaluable
functions) are presented in [Using Action OPs], §7.7, page 114.

Evaluable functions are used whenever you want to evaluate some expres-
sions, to compute some results, or to have some “side effects” on external mod-
ules (by sending a message, or by calling a function which will have some effects
on these external modules).

Evaluable functions can be used in a Composed Term embedded in an Ex-
pression. Whenever an evaluable function is called, each argument must be
defined and bound (unless the function is able to handle gracefully unbound
variable, but this is unlikely).

6.1 Predefined Evaluable Functions

All the evaluable functions return a Term *, i.e. a pointer to a Term structure
(see [Data Structures and Types Used], §G.1.1, page 333). However, this term
can contain different types of objects (see [Terms], §3.2, page 47), and this
is left to the user to decide which type he needs to return. In the following
description, we will indicate which is the type of the object contained in the
Term * returned by the evaluable function. Besides, all the evaluable functions
take a TermList as an argument. Whenever it is possible, we will specify the
number of arguments and the type of the Term for each element.

To help the reader understand the descriptions for the evaluable functions
in the following section, consider the + (plus) evaluable function:

+ Evaluable Function

INTEGER or FLOAT or LONG LONG + (INTEGER or LONG LONG or FLOAT+)

is the plus function. It is defined for n terms. It adds any numbers
to the first argument (INTEGER or LONG LONG or FLOAT), and returns

95

96 CHAPTER 6. EVALUABLE FUNCTIONS

a term containing the result casted according to the passed argu-
ments (if all INTEGERs then INTEGER, if all INTEGER or LONG LONG

then LONG LONG, FLOAT otherwise).

The INTEGER or LONG LONG or FLOAT before the function name + is the
type of the object contained in the Term * object that is returned by this +

function. The (INTEGER or LONG LONG or FLOAT)+ after the function name
specifies the type of the object contained in the TermList which is the argument
to the plus function. In this case, it means at least one argument (this is rep-
resented with the trailing +), and all the arguments must be FLOAT, LONG LONG

or INTEGER Term *. See [liblist.a library], §G.3, page 346, for examples of how
to access different types of objects contained in TermList, as well as [How to
Define your Own Evaluable Functions], §6.2, page 107, for examples of how to
store different types of objects in a Term * that will be returned by evaluable
functions.

Evaluable functions can be classified in different sections according to their
type, or to the type of objects they manipulate/return.

6.1.1 Arithmetic Evaluable Functions

These evaluable functions deal with numbers and perform the common arith-
metic operation. All functions taking INTEGER or FLOAT also now takes LONG LONG...
and behave as expected with respect to casting.

+ Evaluable Function

INTEGER or FLOAT + (INTEGER or FLOAT+) is the plus function.
It is defined for n terms. It adds any numbers to the first argument
(INTEGER or FLOAT), and returns a term containing the result casted
according to the passed arguments (if all INTEGERs then INTEGER,
FLOAT otherwise).

- Evaluable Function

INTEGER or FLOAT - (INTEGER or FLOAT+) is the difference func-
tion. It is defined for n terms. It subtracts any number to the first
argument (INTEGER or FLOAT), and returns a term containing the
result casted according to the passed arguments (if all INTEGERs
then INTEGER, FLOAT otherwise). With one argument, it returns the
minus.

* Evaluable Function

INTEGER or FLOAT * (INTEGER or FLOAT+) is the time function.
It is defined for n terms. It multiplies any numbers (INTEGER or
FLOAT), and returns a term containing the result casted according
to the passed arguments (if all INTEGERs then INTEGER, FLOAT oth-
erwise).

/ Evaluable Function

6.1. PREDEFINED EVALUABLE FUNCTIONS 97

INTEGER or FLOAT / (INTEGER or FLOAT+) is the divide func-
tion. It is defined for n terms. It divides the first number (INTEGER
or FLOAT) by the subsequent numbers, and returns a term containing
the result casted according to the passed arguments (if all INTEGER
then INTEGER, FLOAT otherwise). With one argument, it returns the
inverse.

abs Evaluable Function

INTEGER or FLOAT abs (INTEGER or FLOAT) is the abs function.
It is defined for 1 term. It returns the abs value of its argument
(INTEGER or FLOAT).

mod Evaluable Function

INTEGER mod (INTEGER INTEGER) is the modulo function. It is
defined for two INTEGER terms. It returns an INTEGER, the modulo
of the two integers (it is equivalent to the C % operation).

rand Evaluable Function

INTEGER rand (INTEGER) is defined for one INTEGER terms. It
returns a random INTEGER between 0 and the int given as argument
(not included).

float-to-int Evaluable Function

INTEGER float-to-int (FLOAT) is defined for 1 term. It returns
the FLOAT or INTEGER passed as argument casted in an INTEGER.

int-to-float Evaluable Function

FLOAT int-to-float (INTEGER) is defined for 1 term. It returns
the INTEGER ,LONG LONG or FLOAT passed as argument casted in a
FLOAT.

6.1.2 Array Manipulation Evaluable Functions

These evaluable functions deal with array, INT ARRAY and FLOAT ARRAY. See
[Array of Floats as a Term], §3.2.14, page 50 and [Array of Integers as a Term],
§3.2.13, page 50, for more information on arrays.

make-float-array Evaluable Function

FLOAT ARRAY make-float-array (INTEGER size) returns a Term

* containing a FLOAT ARRAY of size size. This function should be
used in a Special Action.

get-float-array Evaluable Function

FLOAT get-float-array (FLOAT ARRAY float array, INTEGER index)

returns a Term * containing the FLOAT (in fact it is a double) stored
in the array float array at INTEGER index.

98 CHAPTER 6. EVALUABLE FUNCTIONS

get-float-array-size Evaluable Function

INTEGER get-float-array-size (FLOAT ARRAY float array) re-
turns a Term * containing the INTEGER value of the size of the
float array.

make-int-array Evaluable Function

INT ARRAY make-int-array (INTEGER size) returns a Term * con-
taining a INT ARRAY of size size. This function should be used in a
Special Action.

get-int-array Evaluable Function

INTEGER get-int-array (INT ARRAY int array, INTEGER index)

returns a Term * containing the INTEGER stored in the array int array

at INTEGER index.

get-int-array-size Evaluable Function

INTEGER get-int-array-size (INT ARRAY int array) returns a
Term * containing the INTEGER value of the size of the int array.

6.1.3 OP Instance Related Evaluable Functions

These evaluable functions are used to access various information about a OP
Instance.

property-of Evaluable Function

Term * property-of (ATOM property, TT OP INSTANCE) returns
the Term which is bound to the property property in the op-instance.

fact-invoked-ops-of Evaluable Function

LISP LIST of op-instance fact-invoked-ops-of (LISP LIST) is
the fact-invoked-ops-of function. It is defined for 1 term of type
LISP LIST. It returns a LISP LIST containing the OP Instances
which are invoked by a fact.

get-the-decision-procedures-of Evaluable Function

LISP LIST of op-instance get-the-decision-procedures-of (LISP LIST

of op-instance) returns a LISP LIST containing all the OP In-
stances of the LISP LIST which have the property decision-procedure

TRUE.

op-instance-goal Evaluable Function

TT GOAL or term op-instance-goal (TT OP INSTANCE) is the op-
instance-goal function. It is defined for 1 term. It returns a TT GOAL

containing the goal which leads to the application of this OP In-
stance, or returns the symbol NIL if it was invoked by a fact.

6.1. PREDEFINED EVALUABLE FUNCTIONS 99

safety-handlers-of Evaluable Function

LISP LIST of op-instance safety-handlers-of (LISP LIST of

op-instance) is the safety-handlers-of function. It is defined for 1
term LISP LIST. It returns the list of OP Instances which have the
property SAFETY-HANDLER set.

preferred-of Evaluable Function

LISP LIST of op-instance preferred-of (LISP LIST of TT OP INSTANCE)

is the preferred-of function. It is defined for 1 term LISP LIST. It
returns the list of OP Instances which have the property PREFERRED

set.

6.1.4 Fact and Goal Related Evaluable Functions

These evaluable functions are used to access various information about facts
and goals.

GOAL-STATEMENT Evaluable Function

GTEXPRESSION GOAL-STATEMENT GOAL will return the GTEXPRES-
SION of the GOAL.

FACT-STATEMENT Evaluable Function

GEXPRESSION FACT-STATEMENT FACT will return the GEXPRES-
SION of the FACT.

GSTATEMENT-PREDICAT Evaluable Function

ATOM GSTATEMENT-PREDICAT GTEXPRESSION return the predicat of
the GTEXPRESSION as an ATOM.

FSTATEMENT-PREDICAT Evaluable Function

ATOM FSTATEMENT-PREDICAT GEXPRESSION return the predicat of
the GEXPRESSION as an ATOM.

GSTATEMENT-ARG Evaluable Function

Any Term GSTATEMENT-ARG GTEXPRESSION, INTEGER pos returns
the pos’th argument of the GTEXPRESSION.

FSTATEMENT-ARG Evaluable Function

Any Term FSTATEMENT-ARG GEXPRESSION, INTEGER pos returns the
pos’th argument of the GEXPRESSION.

100 CHAPTER 6. EVALUABLE FUNCTIONS

6.1.5 Intention Related Evaluable Functions

These evaluable functions are used to access various information about Inten-
tions.

get-intended-decision-procedures Evaluable
Function

LISP LIST of intentions get-intended-decision-procedures ()

returns a LISP LIST containing all the intentions of the intention
graph which top level op-instance has the property decision-procedure

true.

number-of-intentions Evaluable Function

INTEGER number-of-intentions () returns an INTEGER which is
the number of intentions in the intention-graph.

get-current-intention Evaluable Function

TT INTENTION get-current-intention () returns a TT INTENTION

containing the current intention.

get-all-intentions Evaluable Function

LISP LIST of Intentions get-all-intentions () returns a LISP LIST

containing all the intentions of the intention graph.

get-other-intentions Evaluable Function

LISP LIST of Intentions get-other-intentions () returns a
LISP LIST containing all the intentions of the intention graph, ex-
cept the current intention.

get-sleeping-intentions Evaluable Function

LISP LIST of Intentions get-sleeping-intentions () returns
a LISP LIST containing all the intentions of the intention graph,
which are sleeping.

get-root-intentions Evaluable Function

LISP LIST of Intentions get-root-intentions () returns a LISP LIST

containing all the intentions which are root of the intention graph.

find-intention-id Evaluable Function

TT INTENTION find-intention-id (ATOM tag) returns a TT INTENTION

containing an intention if there is at least one intention of the inten-
tion graph, which have been tagged with the ATOM tag, and returns
NULL otherwise.

find-intentions-id Evaluable Function

6.1. PREDEFINED EVALUABLE FUNCTIONS 101

LISP LIST of Intentions find-intentions-id (ATOM tag) re-
turns a LISP LIST containing all the intentions of the intention
graph, which have been tagged with the ATOM tag.

get-intention-priority Evaluable Function

INTEGER get-intention-priority (TT INTENTION) returns the
priority of the intention.

get-intention-time Evaluable Function

INTEGER get-intention-time (TT INTENTION) returns the time
(date of creation) of the intention.

6.1.6 Time Related Evaluable Functions

time Evaluable Function

INTEGER time () returns an INTEGER which is the number of sec-
onds since some defined time. In fact, the time origin is of no im-
portance as it is the difference between two calls which is important.

mtime Evaluable Function

INTEGER mtime () returns an INTEGER which is the number of mil-
liseconds since sometime... (in any case, it is the difference with
another call which is important).

USER-CLOCK-TICK Evaluable Function

INTEGER USER-CLOCK-TICK () returns an INTEGER which is the
number of machine TICK spent in user code used by the OPRS
process since it started (CLK TCK, defined in ‘¡time.h¿’, is the number
of TICK per seconds).

SYS-CLOCK-TICK Evaluable Function

INTEGER SYS-CLOCK-TICK () returns an INTEGER which is the num-
ber of machine TICK spent in system code (i.e. system calls) used
by the OPRS process since it started (CLK TCK, defined in ‘¡time.h¿’,
is the number of TICK per seconds).

USER-SYS-CLOCK-TICK Evaluable Function

INTEGER USER-SYS-CLOCK-TICK () returns an INTEGER which is
the number of machine TICK spent in system AND in user code used
by the OPRS process since it started (CLK TCK, defined in ‘¡time.h¿’,
is the number of TICK per seconds).

102 CHAPTER 6. EVALUABLE FUNCTIONS

6.1.7 Lisp Evaluable Functions

The following functions are defined for LISP like objects (for more information
see [Lisp and Lisp-like Functions], §H, page 357). The functions car and cdr

are the basic access functions in LISP. The car returns the first element of a list,
and the cdr returns the rest of the list (i.e. the list without the first element).

For example in Lisp, if the list l is equal to (a b c), then (car l) return a,
and (cdr l) returns (b c). There are then some convenience functions which
are provided. They are built following the following scheme: c[a|d]+r. For
example (caddr l), is equivalent to: (car (cdr (cdr l))) which in our case
returns c. OPRS provide all c[a|d]+r with at most three a or d.

cons Evaluable Function

LISP LIST cons (Any Term LISP LIST) is the cons function. It is
defined for 2 terms, a Any Term and a LISP LIST. It returns the new
LISP LIST.

cons-tail Evaluable Function

LISP LIST cons-tail (Any Term LISP LIST) is defined for 2 terms,
a Any Term and a LISP LIST. It adds the Any Term at the end of
the LISP LIST. It returns the new LISP LIST.

car Evaluable Function

Any Term car (LISP LIST) is defined for 1 term LISP LIST. It
returns the car (or first) Any Term of the LISP LIST.

cdr Evaluable Function

LISP LIST cdr (LISP LIST) is defined for 1 term LISP LIST. It
returns the cdr (or rest) LISP LIST of the LISP LIST.

caar Evaluable Function

Any Term caar (LISP LIST) is defined for 1 term LISP LIST. It
returns the caar Any Term of the LISP LIST.

cadr Evaluable Function

Any Term cadr (LISP LIST) is defined for 1 term LISP LIST. It
returns the cadr (or second) Any Term of the LISP LIST.

cdar Evaluable Function

LISP LIST cdar (LISP LIST) is defined for 1 term LISP LIST. It
returns the cdar LISP LIST of the LISP LIST.

cddr Evaluable Function

LISP LIST cddr (LISP LIST) is defined for 1 term LISP LIST. It
returns the cddr LISP LIST of the LISP LIST.

6.1. PREDEFINED EVALUABLE FUNCTIONS 103

caaar Evaluable Function

Any Term caaar (LISP LIST) defined for 1 term LISP LIST. It re-
turns the caaar Any Term of the LISP LIST.

cadar Evaluable Function

Any Term cadar (LISP LIST) is defined for 1 term LISP LIST. It
returns the cadar Any Term of the LISP LIST.

cdaar Evaluable Function

LISP LIST cdaar (LISP LIST) is defined for 1 term LISP LIST. It
returns the cdaar LISP LIST of the LISP LIST.

cddar Evaluable Function

LISP LIST cddar (LISP LIST) is defined for 1 term LISP LIST. It
returns the cddar LISP LIST of the LISP LIST.

caadr Evaluable Function

Any Term caadr (LISP LIST) is defined for 1 term LISP LIST. It
returns the caaar Any Term of the LISP LIST.

caddr Evaluable Function

Any Term caddr (LISP LIST) is defined for 1 term LISP LIST. It
returns the caddr Any Term of the LISP LIST.

cdadr Evaluable Function

LISP LIST cdadr (LISP LIST) is defined for 1 term LISP LIST. It
returns the cdadr LISP LIST of the LISP LIST.

cdddr Evaluable Function

LISP LIST cdddr (LISP LIST) is defined for 1 term LISP LIST. It
returns the cdddr LISP LIST of the LISP LIST.

first Evaluable Function

Any Term first (LISP LIST) is the first function. It is defined
for 1 term LISP LIST. It returns the first (or car) Any Term of the
LISP LIST.

second Evaluable Function

Any Term second (LISP LIST) is the second function. It is defined
for 1 term LISP LIST. It returns the second (or cadr) Any Term of
the LISP LIST.

last Evaluable Function

104 CHAPTER 6. EVALUABLE FUNCTIONS

Any Term last (LISP LIST) is defined for 1 term LISP LIST. It
returns the last Any Term of the LISP LIST. An error will occur if
the list is empty.

nth Evaluable Function

Any Term nth (Integer LISP LIST) returns the nth Any Term of
the LISP LIST, indexed from zero. An error will occur if the first
argument is not an integer or the list is empty.

delete-from-list Evaluable Function

LISP LIST delete-from-list (Any Term, LISP LIST) returns a
new LISP LIST which is the one passed in argument in which all
instance of Any Term have been removed. The order in the list is
not preserved.

list-difference Evaluable Function

LISP LIST list-difference (LISP LIST LISP LIST) is the list-
difference function. It is defined for 2 terms each of them being
a LISP LIST. It returns a new LISP LIST which is the difference
between the first one and the second one.

list-intersection Evaluable Function

LISP LIST list-intersection (LISP LIST LISP LIST) is defined
for two LISP LIST terms. It returns a LISP LIST which is the inter-
section of the two LISP LIST.

list-union Evaluable Function

LISP LIST list-union (LISP LIST LISP LIST) is defined for two
LISP LIST terms. It returns a LISP LIST which is the union of the
two LISP LIST.

list-difference-order Evaluable Function

LISP LIST list-difference-order (LISP LIST LISP LIST) is the
list-difference function. It is defined for 2 terms each of them being
a LISP LIST. It returns a new LISP LIST which is the difference be-
tween the first one and the second one, with the element in the same
order than in the first one.

length Evaluable Function

INTEGER length (LISP LIST) is the length function. It is defined
for 1 term. It returns an INTEGER, the length of the LISP LIST.

select-randomly Evaluable Function

6.1. PREDEFINED EVALUABLE FUNCTIONS 105

Any Term select-randomly (LISP LIST) is the select-randomly
function. It is defined for 1 term LISP LIST. It returns one of its
elements (a Any Term) chosen randomly.

reverse Evaluable Function

LISP LIST reverse (LISP LIST) is the reverse function. It is de-
fined for 1 term LISP LIST. It returns the reverse of the LISP LIST.

sort-alpha Evaluable Function

LISP LIST sort-alpha (LISP LIST of terms) is a sorting func-
tion. It is defined for 1 term LISP LIST. It returns the same list with
its element sorted alphanumericaly.

l-list Evaluable Function

LISP LIST l-list (TermList terms) is the l-list function. It is
defined for n terms. It returns the LISP LIST containing all the
TermList terms. The difference with the (. and .) reader (which
can also be used to build LISP LIST) is that the elements will be
evaluated.

6.1.8 Miscellaneous Evaluable Functions

gensym Evaluable Function

ATOM gensym () is the traditional gensym function (which create
a new unique symbol in Lisp) . It is defined for no argument. It
returns a new unique ATOM.

sprintf Evaluable Function

STRING sprintf (COMPOSED TERM term) will return a STRING which
is the result of the formatted print directives (see Printing Actions
like printf).

string-cat Evaluable Function

STRING string-cat (STRING STRING) will return a STRING which
is the concatenation of the two STRINGs passed as argument.

term-string-cat Evaluable Function

STRING term-string-cat (TermList terms) will return a STRING
which is the concatenation of all the terms passed as argument.

val Evaluable Function

Any Term val (Any Term) is defined for 1 argument. It return
this argument as is, without any modification. This function is very
useful to force retrieving the value of a program variable so it is not
bound again by the database/OP execution.

106 CHAPTER 6. EVALUABLE FUNCTIONS

ff-val Evaluable Function

Term * ff-val (VARIABLE GEXPRESSION) is defined for 2 terms,
a VARIABLE and a GEXPRESSION. It is used to retrieve the value of
a functional fact. For example, if POSITION has been declared func-
tional fact 1 (with declare ff position 1). Then calling (FF-VAL

$X (POSITION VALVE $X)) will return the current Term * position
of the VALVE. It returns the ATOM NIL if the predicate has not been
declared as functional fact, or if no value were found. This makes it
indistinguishable from a NIL real value.

all Evaluable Function

LISP LIST all (VARIABLE GEXPRESSION) is the all function. It
is defined for 2 terms, a VARIABLE and a GEXPRESSION. It re-
turns a LISP LIST containing all the possible and unique bindings
of VARIABLE for which the GEXPRESSION is true in the database.
see [Universal Quantification of Variables], §10.9, page 142 for more
information on this subject.

n-all Evaluable Function

LISP LIST of LISP LIST n-all (LENV GEXPRESSION) is the n-
all function. It is defined for 2 terms, a LISP LIST (a Lisp list
of VARIABLEs) and a GEXPRESSION. It returns a LISP LIST of
LISP LIST (in the same order as they are defined in LENV) con-
taining all the possible bindings of LENV for which the GEXPRES-
SION is true in the database. N-ALL is used in OPs such as in (!

(... (n-all (. $x $y .) (foo $y $x)) ...)), which re-
turns the LISP LIST of LISP LIST containing the bindings of the
LENV (example: if we have (foo 1 2) and (foo 3 4) in the database,
returns (.(. 2 1 .) (. 4 3 .).)) which satisfies (foo $y

$x). See [Universal Quantification of Variables], §10.9, page 142
for more information on this subject.

n-all-list Evaluable Function

LISP LIST of LISP LIST n-all-list (LENV GEXPRESSION) is the
n-all-list function. It is defined for 2 terms, a LISP LIST (a Lisp
list of VARIABLE) and a GEXPRESSION. It returns a LISP LIST of
LISP LIST (in the same order as they are defined in LENV) each con-
taining the bindings of the variable in LENV for which the GEXPRES-
SION is true in the database. N-ALL-LIST is used in OPs such as in
(! (... (n-all-list ($x $y) (foo $y $x)) ...)), which,
if we have (foo 1 2) and (foo 3 4) in the database, returns: (.(.
1 3 .) (. 2 4 .).)). See [Universal Quantification of Vari-
ables], §10.9, page 142 for more information on this subject.

all-pos Evaluable Function

6.2. HOW TO DEFINE YOUR OWN EVALUABLE FUNCTIONS 107

LISP LIST all-pos (INTEGER EXPRESSION) is defined for 2 terms,
an INTEGER and a GEXPRESSION. It returns a LISP LIST con-
taining all the Terms in INTEGER’th position in all the Expression
matching EXPRESSION passed as argument.

mention Evaluable Function

LISP LIST of GEXPRESSION mention (AnyTerm) is defined for 1
terms. It returns a LISP LIST containing all the expressions in the
database which mention the AnyTerm (even as a predicat or a func-
tion name).

6.1.9 Goal Building Evaluable Functions

These functions can be used to create goals which can then be intended with
the appropriate actions (see [Intending Goal Actions], §7.7.1, page 118, and see
[Intending Goals Directly], §10.6, page 140).

build-goal Evaluable Function

TT GOAL build-goal (GTEXPRESSION) is defined for 1 term con-
taining a Gtexpression. It returns a TT GOAL containing a goal which
can then be intended directly with the appropriate goal intending
actions (see [Intending Goal Actions], §7.7.1, page 118).

apply-subst-in-gtexpr Evaluable Function

GTEXPRESSION apply-subst-in-gtexpr (VARIABLE AnyTerm GTEXPRESSION)

is defined for 3 terms: a variable, a Term, and a gtexpression. It
returns a term containing a Gtexpression, in which all occurrences
of the variable is replaced by the term.

apply-subst-in-goal Evaluable Function

TT GOAL apply-subst-in-goal (VARIABLE AnyTerm GTEXPRESSION)

is defined for 3 terms: a variable, a Term, and a gtexpression. It
returns a TT GOAL containing a goal (created from the GTEXPRES-
SION passed in the arguments list), and in which all occurrences of
the variable is replaced by the term. The goal obtained can then be
intended directly with the appropriate goal intending actions (see
[Intending Goal Actions], §7.7.1, page 118).

6.2 How to Define your Own Evaluable Func-
tions

It is fairly easy to define your own evaluable functions. To do so, you have to
write a C (or in any language you can link the object code with) function which
takes a list of terms (TermList) as arguments and returns a pointer to a new

108 CHAPTER 6. EVALUABLE FUNCTIONS

Term. It is in fact critical that the Term * returned be a pointer to a NEW
Term. Using the list library functions you can then access the element of the
TermList and compute the returned value (see [Library and Kernel Functions],
§G, page 333).

You will find various examples of user-defined evaluable functions and actions
in the file: ‘user-ev-function.c’. Here is a simple example of such function.

Term *toto_eval_func(TermList terms)

{

Term *t1, *res;

res = MAKE_OBJECT(Term);

t1 = (Term *)get_list_pos(terms, 1);

res->type = INTEGER;

res->u.intval = my_function(t1);

return res;

}

You can define as many evaluable functions as you want. You need to declare
them in the kernel, as well as their external name (as it will appear in the OPs),
and the number of arguments they take. This declaration is made in the body
of the declare user eval funct function which is called upon start up of the
kernel.

void declare_user_eval_funct(void)

{

make_and_declare_eval_funct("TOTO", toto_eval_func, 1);

return;

}

make and declare eval funct Kernel User Function

void make and declare eval funct (Function name, PFPT funct,

int ar) is used to declare the evaluable function. You have to spec-
ify the function name, the C function which implements it, and the
arity of this function.

declare user eval funct Kernel User Function

void declare user eval funct (void) is the function in which
you must put your call to make and declare eval funct. It is
called upon start-up by the kernel and builds the appropriate table
to map the actions and evaluable functions names and the corre-
sponding C function. Note that the user can redefine the predefined
evaluable functions or actions by using their name.

Chapter 7

Procedure Execution and
Run Time

7.1 Run Time

As shown on figure 7.1, the OPRS Kernel runs the entire system. From a
conceptual standpoint, it operates in a relatively simple way. At any particular
time, certain goals are established and certain events occur that alter the beliefs
held in the system database (1). These changes in the system goals and beliefs
trigger (invoke) various OPs (2). One or more of these applicable OPs are then
chosen and placed on the intention structure (3). Finally, OPRS selects a task
(intention) from the root of the intention structure (4) and executes one step of
that task (5). This results either in the performance of a primitive action (6),
the establishment of a new subgoal, or the conclusion of some new belief (7).

At this point the interpreter cycle starts again: the newly established goals
and facts (if any) trigger new OPs, one or more of these are selected and placed
on the intention structure, and again an intention is selected from that structure
and partially executed.

7.2 Intention Graph

The Intention Graph is one of the most important component of the OPRS
Kernel. It holds all the intentions/tasks which are currently “active”. Think
of it as the graph of all the tasks upon which the OPRS Kernel works at one
point.

These tasks are supposedly more or less independent. In other words, they
should be working on their own problem, satisfying their own goal, responding
to some events.

Each task or intention can be visualized under the X-OPRS Kernel, if you
have selected the intention graphic trace. It is represented as a box, containing

109

110 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

Invocation Part:

Invocation Part:

(overpressurized FRCS)
(! (position valve close))

(soak ka1 ka4)

Invocation
Part:(pressurization-alarm)

Procedures Library

KA 1
(soak <Ka-7> <Ka-3>)

KA 2
(! (position valve close))

KA 3
(position tb bp)

KA 4

KA 5
(Alarm)

S

W

7

Tasks Graph

New goals & new facts

Procedure Execution

External events

Posting new subgoal

Triggering
andUnification

Intend the Procedure

Execute the intention

Primitive
action

1

2

3

6

5

4

Posting
MetaFacts

(position valve op)

orAction KA:
(signal switch s1)

Graph KA:

Invocation
Part:(overpressurized $x)

Invocation Part:
(! (position switch $x))

Action Part:
(signal switch $x)

Invocation Part:(! (position
valve $x))

KA 6
(alarm)

Figure 7.1: C Procedural Reasoning System main loop

Figure 7.2: Intention Graph Development

Figure 7.3: Intention Graph Development

7.2. INTENTION GRAPH 111

the name of the top OP in this task (i.e. the one which was intended in this
new task or intention) and the goal or the fact which is “responsible”, or which
triggered this OP, and lead to this intention.

This set of tasks is represented as a graph (which can be displayed in the
X-OPRS as shown on figure 7.2 and figure 7.3). Only the roots of this graph
can be executed. The other tasks, or intentions, must wait until they become
root themselves before they can be executed. In other words, the precedence
relation in this graph can be interpreted as a blocking relation. A task or
intention cannot be executed until all other tasks before it disappear in the
graph. This, for example, can be used by the user to create a new task which,
if placed in front of the other tasks, will be executed before all the other ones.
Moreover, the other tasks will resume their activity only when the new root has
finished. For example, Figure 7.2 shows an example of an intention graph. Each
intention is represented with a box which specifies the name of the procedure,
as well as the fact or the goal responsible for its activity (i.e. the goal or the
fact which lead to its execution). In this particular example, there are six tasks
represented. The root of the graph is executing a meta level OP and is placed in
front of another meta level OP which execution has been interrupted. These 2
meta level OPs are in front of four tasks which will resume/start their execution
as soon as the two meta level OP are done.

Note that you can have more than one root in the intention graph. In this
case, the system can utilize a user-defined mechanism to decide which intention
should be the current intention, i.e. the one to be executed (see see [Intention
Graph Sorting Predicate], §10.5, page 139). You can use priority (there is in
fact a priority slot in each task), or date of creation, or whatever you think is
the best heuristic to execute this intention.

The current intentions are the one which has been chosen to execute. If you
have selected the intention graphic trace in X-OPRS Kernel, these intentions
are recognizable because of the two small arrows surrounding their name.

Other intentions can be in three different states.

• They can be executable, in which case, they can be selected as the current
intention if they are among the roots of the graph.

• They can be sleeping, which means that the most recent goal they posted
was a wait goal and it has not been achieved yet (a S is visible on the
graphic trace for task in this state).

• They can be awakening, which means that they were sleeping and the
condition they were waiting to become true has just became true. As a
result, they will receive some processing cycle time in the main loop and
will become the current intention, if they are among roots of the graph.

It is important to note that each intention on the intention graph (appearing
as a task box within the Intention Structure shown in Figure 7.1) represents an
entire stack of invoked OPs (procedures). In particular, as each OP is executed,
it establishes certain subgoals. These subgoals, in turn, invoke other OPs, and

112 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

Figure 7.4: A OP with multiple threads.

so on. All the OPs so invoked form a runtime procedure stack, much like the
runtime stack of so called subroutines in conventional programming languages.
Where the system has only one task to perform, there is only one such stack,
and consequently one task box. But where the system needs to perform multiple
tasks, it spawns multiple run time stacks, executing, suspending, and resuming
these in much the same manner as processes are handled in an operating system.

7.3 Multi Threads Execution

Multi-threads execution is linked to parallel execution in OPs. As described
earlier, it is a very versatile mechanism which can be used to parallelized op-
erations in a procedure. However, it is usually used for operations and actions
performed in the same task, intention, i.e. working on a particular goal, or re-
sponding to a particular event. For example, Figure 7.4 shows a OP with two
threads which are both needed to perform the goal specified in the invocation
part. There are a number of OPRS runtime options linked to this mechanism,
to enable/disable parallel posting of goals and parallel intending of OPs.

7.4. OPRS KERNEL MAIN LOOP 113

7.4 OPRS Kernel Main Loop

The OPRS main loop consists of one inner meta level reasoning loop inside the
main loop. The inner loop determines the successive Sets Of Applicable OPs
(SOAK), within the context of concluded beliefs on the previous SOAK. The
inner loop stops when no applicable OPs are found, i.e. when the SOAK is
empty.

The code of the OPRS main loop is provided below to show how meta level
OPs are executed.

while (TRUE) { /* Loop for ever. */

check_stdin(); /* Check the input buffer. */

shift_facts_goals(); /* Get new facts and new goals. */

soak = find_soak(); /* Look for new applicable OPs. */

while (!(list_empty(soak))) { /* While we have Applicable OPs. */

post_soak_meta_fact(soak, oprs); /* Post the Meta Facts. */

previous_soak = soak; /* Save the previous soak value. */

shift_facts_goals(oprs);

soak = find_soak(oprs);

}

if (!(list_empty(previous_soak))) { /* soak empty but previous soak non empty */

post_soak_meta_fact(soak);

if (parallel_intend) /* If parallel intending */

intend_all(previous_soak); /* Intend all of them. */

else

intend(select_randomly(previous_soak));/* Intend one randomly. */

}

current_intention = choose_intention(); /* Choose an intention to execute. */

execute_intention(current_intention); /* Execute one step of the intention. */

previous_soak = soak;

}

When OPs are not being executed, the main loop is idle. However, the ker-
nel monitors new events (coming from the Message Passer or from the OPRS-
Server). In addition, one or more OPs might be sleeping and waiting for par-
ticular conditions to become true. The OPRS-Server kernel will wake up ev-
ery main loop pool sec + main loop pool usec (seconds and milliseconds) to
check if conditions have become true, and awake the appropriate OP.

Every main loop pool sec + main loop pool usec, the conditions which
may have change “by themselves”, like evaluable predicates depending on ex-
ternal conditions are checked. For example, if you have written an evaluable

114 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

predicate which tells if yes or no a particlar tank is full or not, a waiting con-
dition on this predicate will be at least evaluated every main loop pool sec

+main loop pool usec. As a consequence, putting a too small value (such as 0
seconds + 10 milliseconds) will put a higher burden on the kernel execution.

7.5 OP Applicability

The triggering mechanism, i.e. the mechanism which finds the currently ap-
plicable OPs, has been optimized for dynamic environments. The syntax and
semantics of OPs require the Invocation Part to specify a goal or fact condition
that will trigger the execution of the OP. In other words, only the occurrence of
one of these goals or facts may render this OP applicable. When the procedures
are loaded and compiled in the system, hashtables are built and used by the
kernel to quickly retrieve (in constant time) the procedures which are triggered
by a particular fact or a particular goal. Therefore, the kernel does not have
to scan the whole library of procedures for applicable procedures, but only a
subset of those procedures which are “relevant” to a new fact or a new goal. Of
course, this does not prevent the system from using a full unification to check
the applicability of the relevant procedures afterwards, but this is then done on
a very small subset of the set of OPs.

7.6 Intending OP

The action of intending a OP instance, i.e. deciding to execute it is a very im-
portant step in OPRS Kernel and the X-OPRS Kernel main loop. No OP is
executed before it is intended. Moreover, as seen above, there is only one way
to intend a OP: when the current set of applicable OPs is empty, it intends all
the OPs in the previous set of OPs or chooses one randomly in the previous
set of applicable OPs, depending on the value of the set parallel intend

(see [OPRS Kernel Meta Level Option Commands], §2.7, page 35). Note, how-
ever, that applicable OPs can be intended by meta level OPs that are currently
executing.

7.7 Using Action OPs

Action OPs are the basic or primitive actions of the system. Their activity range
from actions such as printing a value on the screen, sending messages to another
OPRS, through opening the valve of a system under OPRS control. Action OPs
produce some type of activity which is implemented using a C function (or any
external code linked to the OPRS Kernel).

There are two types of action OP (see [Using Action OPs], §7.7, page 114).
Standard action (see [Standard Action], §4.3.3, page 69) and Special action (see
[Special Action], §4.3.3, page 69).

7.7. USING ACTION OPS 115

When you define an action OP, you need to specify which C function needs
to be called whenever this action OP is executed. This is very similar to defining
evaluable functions.

7.7.1 Predefined Actions

All evaluable functions return a Term *. However, this term can contain differ-
ent types of objects (see [Terms], §3.2, page 47). In the following description,
we will indicate which type of object is contained in the Term * returned by the
evaluable function. In addition, all the evaluable functions take a TermList as
an argument. Whenever it is possible, we will specify the number of arguments
and the type of the Term for each element.

To help the reader understand the descriptions for the evaluable functions
in the following section, consider the send-message action:

send-message Action

ATOM send-message (ATOM GEXPRESSION) is the send-message func-
tion. It is defined for two terms, an ATOM, the name of the recipient,
and a GEXPRESSION (which must be an EXPRESSION).

The ATOM before the function name send-message is the type of the object
contained in the Term * object that is returned by this send-message function.
The (ATOM GEXPRESSION) after the function name specifies the type of the
object contained in the TermList which is the argument to the send-message

function. In this case, it means at two argument an ATOM (the name of the
recipient) and a GEXPRESSION (the message itself).

Most predefined actions have a corresponding OP in ‘new-default.opf ’, ‘meta-
intended-goal.opf’ or ‘new-meta.opf’ (see [Default OPs], §F, page 309).

Predefined actions can be sorted in various categories:

Printing Actions

These actions are used to print objects in various format.
print Action

ATOM print (ANY TERM term) is the print function. It is defined
for 1 term. It prints the object and a cariage return.

print-inside Action

ATOM print-inside (COMPOSED TERM term) is defined for 1 term.
The format of the term passed as argument is somewhat awkward
and is here for upward compatibility with the old Lisp version of
OPRS. The Term should look like this:
(FORMAT NIL "The Factorial of ~a is ~a." $X $N)))

i.e. a list containing the word FORMAT, then the symbol NIL, then a
string, and finally a number of variables or terms. The ~a in the
string will be replaced at print time with the value of the corre-
sponding terms or variables.

116 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

printf Action

ATOM printf (COMPOSED TERM term) is defined for 1 term. The
format of the term passed as argument is somewhat awkward but
similar to the C format directive. The Term should look like this:
(FORMAT "The Factorial of %d is %d." $X $N)))

i.e. a list containing the word FORMAT, then a string, and finally a
number of variables or terms. The %d in the string will be replaced
at print time with the value of the corresponding terms or variables.
The following directives are supported: %g, %d, %f and %s. It does
not print a carriage return at the end of the string. NEW DJM: The
directive %t is like %s except that it will preserve the double-quotes
around strings...this is useful for writing out PRS terms that can be
read back in again. Hence ’t’ for term.

Input Actions

read-inside Action

undefined read-inside () is the read-inside function. It is de-
fined for no term. It returns the symbol read on the input. In
fact, to make the read asynchronous, this function is currently im-
plemented using a fact which is posted by the user. This fact is the
basic events fact (see [Basic Events], §5.7, page 86), (READ-RESPONSE
<response>), it will wake up the read action which will return the
term <response>.

read-inside-id Action

undefined read-inside-id (ATOM id) is the read-inside-id func-
tion. It is defined for one term, an ATOM. This function will wait for
the fact : (READ-RESPONSE-ID id <response>), and returns the
term <response>.

read-inside-id-var Action

ATOM read-inside-id-var (ATOM id undefined response) is the
read-inside-id-var function. It is defined for two terms an ATOM id

and an undefined Term response. This function will wait for the
fact : (READ-RESPONSE-ID id <response>), if the term response

given as second argument is an unbound variable it will bind it to
the ¡response¿, else it will wait until a fact unifies it.

Array Manipulation Actions

set-float-array Action

ATOM set-float-array (FLOAT ARRAY float array, INTEGER index,

FLOAT value) will store the FLOAT value at index index in the ar-
ray float array.

7.7. USING ACTION OPS 117

set-int-array Action

ATOM set-int-array (INT ARRAY int array, INTEGER index, INTEGER

value) will store the INTEGER value at index index in the array
int array.

Intending OP Instance Actions

intend-op Action

ATOM intend-op (TT OP INSTANCE) is the intend-op function. It
is defined for one term, a TT OP INSTANCE. It will intend it, after the
current intention.

intend-op-with-priority Action

ATOM intend-op-with-priority (TT OP INSTANCE and INTEGER)

is defined for two terms, a TT OP INSTANCE and an INTEGER. The OP
Instance will be intended, after the current intention, with the pri-
ority specified in the INTEGER.

intend-op-after Action

ATOM intend-op-after (TT OP INSTANCE opi, LISP LIST of intentions

after) is defined for two terms, a TT OP INSTANCE and a LISP LIST

of intentions. It will intend opi after all the intentions in after.

intend-op-with-priority-after Action

ATOM intend-op-with-priority-after (TT OP INSTANCE opi, INTEGER

priority, LISP LIST of intentions after) is defined for three
terms; opi a TT OP INSTANCE, priority an INTEGER and after a
LISP LIST of intentions. The opi will be intended with the priority
priority after all the intentions in after.

intend-op-before-after Action

ATOM intend-op-before-after (TT OP INSTANCE opi,LISP LIST of

intentions before, LISP LIST of intentions after) is defined
for three terms, a TT OP INSTANCE opi which will be intended, before
all the intentions in before and after all the intentions in after.

intend-op-after-before Action

ATOM intend-op-after-before (TT OP INSTANCE opi, LISP LIST

of intentions after, LISP LIST of intentions before) is de-
fined for three terms, a TT OP INSTANCE opi which will be intended,
after all the intentions in after and before all the intentions in
before.

intend-op-with-priority-after-before Action

118 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

ATOM intend-op-with-priority-after-before (TT OP INSTANCE

opi, INTEGER priority, LISP LIST of intentions after, LISP LIST

of intentions before) is defined for four terms, a TT OP INSTANCE

opi which will be intended with the priority priority, after all the
intentions in after and before all the intentions in before.

intend-all-ops-as-root Action

ATOM intend-all-ops-as-root (LISP LIST of op-instance) is
defined for one term, a LISP LIST of op-instance. Each OP Instance
will be intended as a root of the Intention Graph.

intend-all-ops Action

ATOM intend-all-ops (LISP LIST of op-instance) is defined for
one term, a LISP LIST of op-instance. Each OP Instance will be in-
tended in the Intention Graph, after the current intention.

intend-all-ops-after Action

ATOM intend-all-ops-after (LISP LIST of op-instance), LISP LIST

of intentions after) is defined for two terms, a LISP LIST of op-
instance and after a LISP LIST of intentions. Each OP Instance
will be intended in the Intention Graph, after all the intentions in
after.

Intending Goal Actions

intend-all-goals-// Action

ATOM intend-all-goals-// (LISP LIST of goal) is defined for
one term, a LISP LIST of goals. Each goal will be intended in parallel
after the current intention.

intend-all-goals-//-as-roots Action

ATOM intend-all-goals-//-as-roots (LISP LIST of goal) is de-
fined for one term, a LISP LIST of goals. Each goal will be intended
as a root of the intention graph.

intend-all-goals-//-after Action

ATOM intend-all-goals-//-after (LISP LIST of goal), LISP LIST

of intentions after) is defined for two terms, a LISP LIST of
goals and after a LISP LIST of intentions. Each goal will be in-
tended in the Intention Graph, after all the intentions in after.

intend-all-goals-//-as-roots-with-priorityAc-
tion

7.7. USING ACTION OPS 119

ATOM intend-all-goals-//-as-roots-with-priority (LISP LIST

of op-instance, LISP LIST of Term INTEGER) is defined for two
terms, a LISP LIST of goals and a LISP LIST of Term INTEGER. Each
goal will be intended as a root with the priority specified in the
INTEGER list.

intend-all-goals-//-after-roots Action

ATOM intend-all-goals-//-after-roots (LISP LIST of goal) is
defined for one term, a LISP LIST of goals. Each goal will be in-
tended in parallel after the root(s) of the intention graph.

intend-goal Action

ATOM intend-goal (TT GOAL goal) is defined for one term, a TT GOAL

goal which will be intended after the current intention.

intend-goal-with-priority Action

ATOM intend-goal-with-priority (TT GOAL goal, INTEGER priority)

is defined for two terms, a TT GOAL goal which will be intended with
the priority priority, after the current intention.

intend-goal-after-before Action

ATOM intend-goal-after-before (TT GOAL goal, LISP LIST of

intentions after, LISP LIST of intentions before) is defined
for three terms, a TT GOAL goal which will be intended after all the
intentions in after and before all the intentions in before.

intend-goal-with-priority-after-before Action

ATOM intend-goal-with-priority-after-before (TT GOAL goal,

INTEGER priority, LISP LIST of intentions after, LISP LIST

of intentions before) is defined for four terms, a TT GOAL goal

which will be intended with the priority priority, after all the in-
tentions in after and before all the intentions in before.

Intentions Manipulation Actions

tag-current-intention Action

ATOM tag-current-intention ATOM tag will tag the current in-
tention, i.e. the intention in which it is executed, with the ATOM

passed in argument.

kill-other-intentions Action

ATOM kill-other-intentions () is defined for no argument. It
will kill all the other intentions in the intention graph, except the
current one.

120 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

kill-intentions Action

ATOM kill-intentions (LISP LIST of Intentions) will kill all
the intentions in the LISP LIST, except itself.

kill-intention Action

ATOM kill-intention (TT INTENTION) will kill the intention in
the TT INTENTION, except itself.

asleep-intentions Action

ATOM asleep-intentions (LISP LIST of Intentions and ATOM wake-up-tag)

will asleep all the intentions in the LISP LIST, but cannot asleep it-
self. Theses intentions will be waked up by the basic event facts (see
[Basic Events], §5.7, page 86), (INTENTION-WAKE-UP wake-up-tag).

asleep-intention Action

ATOM asleep-intention (TT INTENTION and ATOM wake-up-tag)

will asleep the intention in the TT INTENTION, but cannot asleep it-
self. This intention will be waked up by the basic event facts (see
[Basic Events], §5.7, page 86), (INTENTION-WAKE-UP wake-up-tag).

wake-up-intention Action

ATOM wake-up-intention (ATOM wake-up-tag) will just post the
basic event facts (see [Basic Events], §5.7, page 86), (INTENTION-WAKE-UP
wake-up-tag), to wake up intentions asleep by asleep-intention or
asleep-intentions.

asleep-intentions-cond Action

ATOM asleep-intentions-cond (LISP LIST of Intentions and GEXPRESSION

condition) will asleep all the intentions in the LISP LIST, but
cannot asleep itself. Theses intentions will be waked up when the
condition will become true.

asleep-intention-cond Action

ATOM asleep-intention-cond (TT INTENTION and GEXPRESSION condition)

will asleep the intention in the TT INTENTION, but cannot asleep
itself. This intention will be waked up when the condition will
become true.

set-intention-priority Action

ATOM set-intention-priority (TT INTENTION and INTEGER new-priority)

set the priority of the intention to the value new-priority.

apply-sort-predicate-to-all Action

7.7. USING ACTION OPS 121

ATOM apply-sort-predicate-to-all () is defined for no Term, It
will apply the current sorting predicate (see [Intention Graph Sorting
Predicate], §10.5, page 139), to all the intentions of the graph.

sort-intention-priority Action

ATOM sort-intention-priority () is defined for no Term, It will
set the sorting predicate (see [Intention Graph Sorting Predicate],
§10.5, page 139), to sort by priority.

sort-intention-time Action

ATOM sort-intention-time () is defined for no Term, It will set
the sorting predicate (see [Intention Graph Sorting Predicate], §10.5,
page 139), to sort by time (date of creation).

sort-intention-priority-time Action

ATOM sort-intention-priority-time () is defined for no Term,
it will set the sorting predicate (see [Intention Graph Sorting Predi-
cate], §10.5, page 139), to sort by priority then if two intentions have
the same priority, by creation time.

sort-intention-none Action

ATOM sort-intention-none () is defined for no Term, It will unset
the sorting predicate (see [Intention Graph Sorting Predicate], §10.5,
page 139).

Miscellaneous Actions

send-message Action

ATOM send-message (ATOM GEXPRESSION) is the send-message func-
tion. It is defined for two terms, an ATOM, the name of the recipient,
and a GEXPRESSION (which must be an EXPRESSION).

broadcast-message Action

ATOM broadcast-message (GEXPRESSION) is the broadcast-message
function. It is defined for one term, the GEXPRESSION (which
must be an EXPRESSION) to send.

multicast-message Action

ATOM multicast-message (LISP LIST of ATOM GEXPRESSION) is
defined for two term, the LISP LIST of the recipients name (as
ATOM) and the GEXPRESSION (which must be an EXPRES-
SION) to send.

send-string Action

122 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

ATOM send-string (ATOM STRING) is defined for two terms, an
ATOM, the name of the recipient, and a STRING, which will be sent to
the recipient.

execute-command Action

ATOM execute-command (STRING) is the execute-command action.
It will execute the command (see [OPRS Kernel Commands], §2,
page 29), as if it was typed by the user.

start-critical-section Action

ATOM start-critical-section () is defined for no Term, it will
start a critical section (see [Critical Section], §10.8, page 142).

end-critical-section Action

ATOM end-critical-section () is defined for no Term, it will end
the current critical section (see [Critical Section], §10.8, page 142).

fail Action

ATOM fail () Does nothing, just fail, i.e. return the nil symbol.
A OP (called |Fail|) is defined in ‘new-default.opf ’ and call this
action. This action can be useful when you need to explicitly fail a
branch of execution.

succeed Action

ATOM succeed () Does nothing, just succeed, i.e. return the T sym-
bol. A OP (called |Succeed|) is defined in ‘new-default.opf ’ and
call this action. This action can be useful when you need an extra
edge which does nothing between two nodes.

test-and-set Action

ATOM test-and-set (GTEXPRESSION) is the test-and-set function.
It is defined for one GTEXPRESSION. It returns the result of posting
the GTEXPRESSION as a goal. Therefore it can return T, :wait or
NIL. This function should only be used by the —Test and Set— OP.
This function has no reason to be ever since the “IF-THEN-ELSE”
node has been introduced.

7.7.2 How to Define your Own Actions

It is fairly easy to define your own actions. To do so, you have to write a
C function which takes a list of terms (TermList) as arguments and returns
a pointer to a new Term. It is in fact critical that the Term * returned be a
pointer to a NEW Term. Using the list library functions you can then access
the element of the TermList and compute the returned value.

7.7. USING ACTION OPS 123

The value returned by the evaluation of this function is meaningful. It must
be a pointer to term, and this term will be freed by the caller. If it returns
the term symbol :wait, the function has not completed its execution and it
should be called again later. If it returns the term symbol nil, then the action
is considered as failed and the OP failed the goal it was working on. Any other
term value returned is considered as a success, and the action OP is successful.

Keep in mind that you can define Special Actions which call C functions
defined for evaluable functions (see [Predefined Evaluable Functions], §6.1, page
95). However, the compiler will warn you of such practice.

You will find various examples of user-defined evaluable functions and actions
in the file: ‘user-action.c’.

Term *action_bar_foo(TermList terms)

{

Term *t1, *t2, *res;

res = MAKE_OBJECT(Term); /* This will make a Term. */

t1 = (Term *)get_list_pos(terms, 1);

t2 = (Term *)get_list_pos(terms, 2);

if ((t1->type != ATOM) || (t2->type != TERM_COMP))

fprintf(stderr, "Expecting an ATOM and a TERM_COMP in action_bar_foo.");

my_action(t2->u.term, t1->u.id);

res->type = ATOM;

res->u.id = lisp_t_sym; /* Return T */

return res;

}

You can define as many evaluable functions and actions as you want. You
need to declare them in the kernel, as well as their external name (as it will
appear in the OPs), and the number of arguments they take. This declaration
is made in the body of the declare user eval funct function which is called
upon start up of the kernel.

void declare_user_action(void)

{

make_and_declare_action("BAR-FOO", action_bar_foo, 2);

return;

}

make and declare action Kernel User Function

void make and declare action (Function name, PFPT funct, int

ar) is used to declare an Action. You have to specify the function
name, the C function which implements it, and the arity of this
function.

124 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

declare user action Kernel User Function

void declare user action (void) is the function in which you
must put your call to make and declare action. It is called upon
start-up by the kernel and builds the appropriate table to map the
actions and the corresponding C function. Note that the user can
redefine the predefined actions by using their name.

7.8 Graph OP Traversal

When a OP is executed, the execution starts at the START node. Then it pro-
ceeds from one node to an adjacent one if the goal labelling the edge connecting
the two nodes can be achieved. This goes until the control reach an end node,
i.e. a node without outgoing edges. If there are more than one edge outgoing
from the current node, the system will try them one after the other until it findd
one it can achieve. Note however, that there are no a priori predefined path...
The system will try them in a random order. Note also that upon success,
untested path are not kept as possible backtrack point; OPRS Kernel does not
backtrack.

There are split and join nodes (see [Split and Join Node], §4.3.2, page 65).
From the graph traversal point of view, these new nodes introduce parallel
execution. A split mode indicates that all the outgoing branches have to be
traversed/executed in their own thread, and a join node indicates that as many
execution threads as there are ingoing branches must reach this node before
execution can proceed from it.

7.9 Goal Commitment

There is a real goal commitment in OPRS. When a goal is posted, it will be
reposted automatically until the system decides that it has been failed.

A goal is failed, when the main loop cannot find any applicable OPs for this
goal. In fact, this is a little bit more tricky. It is when the main loop cannot
find any applicable OP which have not already been tried with exactly the same
binding environment.

If for example you are reaching an edge in the execution of a OP where
the goal G1 has to be achieved. This goal will first be posted, and the system
will look for all the applicable OP for this goal (and possibly other goals or
facts). We shall assume that three OPs are applicable to satisfy this goal. At
this point, either one of these applicable OPs is intended, or none. If none are
intended (presumably because a more important one has been intended), when
the system will resume the execution of the intention in which G1 appeared,
then it will realize that this goal has not been failed (nor has it been achieved in
fact, or by chance by a side effect of other OP execution). Therefore, it will be
reposted, and the applicable OP for this goal will be recomputed (thus taking
into account new changes in the world). Now, we shall assume then again 3

7.10. MESSAGE PASSING 125

OPs are applicable and OP1 one of them is chosen. The system will then try
to execute OP1. If it succeeds, then G1 is achieved, and the execution of the
original OP can resume. If it fails, then again, when the system will resume the
execution of the intention in which G1 appeared, it will realize that this goal
has not been failed. It will repost the goal G1, however, this time, upon looking
for applicable OPs, and if OP1 is still applicable with exactly the same binding
then previously found, then OP1 will not be put in the applicable OP. In other
words, you do not try the same thing twice, and you consider that a goal is
failed when everything has been tried.

7.10 Message Passing

Message passing is the basic communication mechanism in OPRS. It is very
easy to use and provides a simple and powerful mean to communicate with
other OPRS modules or external modules.

126 CHAPTER 7. PROCEDURE EXECUTION AND RUN TIME

Chapter 8

Parallel Execution of OPs
in OPRS

One can write OPs with parallel execution in various branches of the OPs. This
new feature has a number of consequences on the way OPs can be executed,
and on the performance of the system.

8.1 Changes in the OP Representation

Parallel execution, or conjunctive execution, is represented using split and join
nodes.

We illustrate this new construction with concrete examples. Figure 8.1 shows
a OP which computes Fibonacci. In this particular case, the two recursive calls
can be done in parallel.

Figure 8.2 shows an example of such construct. In this particular example
we mixed the “IF-THEN-ELSE” construction with the split node. The F node
of the N0 “IF-THEN-ELSE” node is a split node (this is represented with the
thick bottom of the node). Similarly, the S4 node is a join node. Basically,
a split node splits as many threads as it has outgoing edges, and a join node
merges as many thread as it has ingoing edges.

In this particular example, for each recursive call, we will get two execution
threads. As a consequence, the number of threads active in the system can raise
dramatically.

Note that if one of the two parallel threads fail, the whole OP fails. This is
the reason why this construct is also called conjunctive execution.

Last, Figure 8.3 presents a OP withdrawn from a mobile robot execution
control application. It shows an example of a procedure implementing a surveil-
lance. Out from node N3, two threads are started, one to execute a trajectory,
another one to set a monitoring. If the trajectory executes properly, it then
stops the monitoring task which will return without modifying the @BILAN vari-
able. Otherwise, if the monitoring detects an obstacle, it returns and the @BILAN

127

128 CHAPTER 8. PARALLEL EXECUTION OF OPS IN OPRS

Figure 8.1: A OP to compute Fibonacci (without parallelism).

Figure 8.2: A OP to compute Fibonacci (with parallelism).

8.2. NEW TRACES AND NEW OPTIONS 129

Figure 8.3: A OP with two threads, one monitoring, the other one executing.

variable is set to nil, which leads this thread to cancel the trajectory execution.

8.2 New Traces and New Options

The introduction of parallel execution in OPRS has introduced a number of new
options and trace.

As for the new options, there are two of them (see [OPRS Kernel Run Option
Commands], §2.6, page 34).

• set parallel post on|off Turn on or off the parallel posting of goals.
When this option is ON, one goal for each thread active in the current
intention will be posted. In the Fibonacci example presented above,
it means that both goals (! (FIBONACCI (- $N 1) $RES2)) and (!

(FIBONACCI (- $N 2) $RES3)), will be posted in parallel.

• set parallel intend on|off Turn on or off the parallel intending of
OP instance. When this option is ON, all the OP Instances found in the
PREVIOUS SOAK (see [OPRS Kernel Main Loop], §7.4, page 113) are in-
tended. ‘This option has some very important consequences on
the standard behavior of the kernel’. In any case the kernel always
checks that a particular OP Instance has not been already intended before
intending it. This is to make sure, for example, that you do not intend
again from a meta level OP, a OP instance already intended by the main

130 CHAPTER 8. PARALLEL EXECUTION OF OPS IN OPRS

loop or another meta level OP. Moreover, the kernel always check that a
OP Instance intended for a particular goal is intended in the proper place,
i.e. it is not intended if there is already another OP instance which has
been intended for the same goal. Note however, that it may be intended
later if it is still applicable and if the other one has failed.

• set parallel intention on|off Turn on or off the parallel intention
execution.

There is also a new trace associated to the new forking/joining mechanism:

• trace thread on|off Turn on or off traces on thread creation and merg-
ing.

8.3 Performance Considerations

The parallel execution of OPs has a number of consequences on the performance
of the system. The positive consequence, is that parallel posting and parallel
intending (see [New Traces and New Options], §8.2, page 129) can increase the
performance as the main loop does less “loop” and therefore some constant
overhead of the main loop is called less time. The drawback, is that the main
loop becomes longer... and the reaction time of the system becomes bigger.
The Fibonacci example is a good example of this behaviors. If you post a goal
requesting a large Fibonacci number, the system will fork a large number of
threads, and will post and intend for each of them.... At some time, you can
have hundreds of threads active, and this can lead to a large reaction time of
the system.

Chapter 9

Meta Level Reasoning

What is meta level reasoning? By meta level reasoning, we mean all the mech-
anisms which enable the user to control various parts or mechanisms of the
OPRS Kernel main loop. This definition is very large and we will see in this
chapter that it covers many aspects of the OPRS system. The most used meta
level mechanism is probably the one deciding which OP to intend when more
than one OP are applicable. Besides, the meta level reasoning can be used to
achieve other goals while developing a real world application. For example, by
controlling the way OPs are intended, one can use meta level OPs to implement
priority mechanism, or decision theory mechanism, or evidential reasoning, etc.
The field is open, and OPRS provides very powerful mechanisms to implement
advanced reasoning.

9.1 SOAK and other Meta Facts

SOAK stands for Set Of Applicable OPs. This fact as well as APPLICABLE-OPS-FACT,
APPLICABLE-OPS-GOAL, FACT-INVOKED-OPS and GOAL-INVOKED-OPS, are auto-
matically concluded by the kernel while it computes the current set of applicable
OPs. They are basic event facts (see [Basic Events], §5.7, page 86), therefore,
they are not “remembered” in the database, but can trigger OPs.

This mechanism is under the control of a flag, that the user can turn on
or off by using the command set meta on|off (see [OPRS Kernel Meta Level
Option Commands], §2.7, page 35). If it is turned off, none of theses Meta
Facts will be concluded. If it is turned on, the individually selected meta facts
will be concluded.

• (SOAK list-of-op-instances). list-of-op-instances contains the
LISP LIST of all the op-instances applicable in this loop. Note that, as
shown in the main loop presented in [OPRS Kernel Main Loop], §7.4, page
113, the soak is updated at each loop and is not incremented with the new
OP applicable in the current loop. This fact can be used to trigger Meta
OPs which want to decide and sort which OP should be intended, and

131

132 CHAPTER 9. META LEVEL REASONING

which one can be forgotten, or postponed, or whatever you decide to do
with them. Keep in mind that, with meta level reasoning, the limit of the
application is your mind...

The posting of this Meta Fact is under the control of the soak option (see
[OPRS Kernel Meta Level Option Commands], §2.7, page 35).

• (APPLICABLE-OPS-FACT fact list-of-op-instances). APPLICABLE-OPS-FACT
contains all the OPs applicable (in list-of-op-instances) because of the
fact. fact is a TT FACT Term. list-of-op-instances is a LISP LIST

Term containing OP-Instances. This fact is not concluded for empty lists
of applicable OPs. In other words, if no OP is applicable because of
a fact, then we do not conclude (APPLICABLE-OPS-FACT fact (. .)).
The reason is left as an exercise to the reader (hint: if we were to conclude
such a fact, we would blow up the memory space of the system in a few
minutes...).

The posting of this Meta Fact is under the control of the app ops fact

option (see [OPRS Kernel Meta Level Option Commands], §2.7, page 35).

• (APPLICABLE-OPS-GOAL goal list-of-op-instances). APPLICABLE-OPS-GOAL
contains all the OPs applicable (in list-of-op-instances) because of the
goal. goal is a TT GOAL Term. list-of-op-instances is a LISP LIST

Term containing the OP-Instances. This fact can be used to sort out
which OP is best suited to fulfill the goal. Due to the goal commitment
(see [Goal Commitment], §7.9, page 124), it is of little, if no, interest to
keep OPs you have not intended in this list for future use.

The posting of this Meta Fact is under the control of the app ops goal

option (see [OPRS Kernel Meta Level Option Commands], §2.7, page 35).

• (FACT-INVOKED-OPS fact-invoked-ops). This meta fact points at the
list of all the OPs applicable because of a fact (any fact) in the previous
loop.

The posting of this Meta Fact is under the control of the fact inv option
(see [OPRS Kernel Meta Level Option Commands], §2.7, page 35).

• (GOAL-INVOKED-OPS goal-invoked-ops). This meta fact points at the
list of all the OPs applicable because of a goal (any goal) in the previous
loop.

The posting of this Meta Fact is under the control of the goal inv option
(see [OPRS Kernel Meta Level Option Commands], §2.7, page 35).

9.2 Writing Meta Level OPs

There is nothing really special about writing Meta Level OPs. They are standard
OPs and nothing particular can distinguish them from other OPs.

9.3. OTHER ASPECTS OF THE META LEVEL 133

However, one often wants the Meta Level OP to be executed “before” any
other already executing intention. To do so, the OPRS Kernel provides the
appropriate mechanism. If you put the property DECISION-PROCEDURE to T in
the properties list of a OP, this OP, if intended in a new intention, will be
intended as a root of the intention graph before all the current roots of the
intention graph. This will indeed ensure that this OP gets executed before all
the others. Keep in mind, however, that this does not prevent the execution of
this OP from being interrupted... In other words, if the OPRS Kernel decides
(because of new events) to still intend new OPs while this OP is executed, it
may interrupt the execution of this OP.

At last, let us stress the fact that writing Meta Level OPs is an interesting
and powerful, but dangerous exercise. For example, one can easily see the
consequence of a Meta Level OP which would be applicable to itself... It would
lead the OPRS Kernel in an infinite loop from which it would never come back,
trying to figure out for ever which OP is applicable, never reaching the fix point
of the recursion (which is to have no OP applicable in one loop, see [OPRS
Kernel Main Loop], §7.4, page 113).

Another more subtle but not less dangerous syndrome is the Meta Level OP
which execution leads to its own applicability... For instance, assume you have
a Meta Level OP which is able to decide what to do when you have two OPs
applicable for the same goal. Now, assume that this very OP posts a goal for
which there are two applicable OPs... Well... You end up with an ever growing
intention graph. At least, in this case, you see the intention graph growing
indefinitely if you graphic trace it.

There are many ways to avoid these pitfalls: most of them consist in using
appropriate properties to guard against oneself, or to only apply to a set of OPs
which have these properties.

9.3 Other Aspects of the Meta Level

As explained earlier, there are other ways to use Meta Level OPs, such as
insuring mutual exclusion on non sharable resources, for example.

134 CHAPTER 9. META LEVEL REASONING

Chapter 10

Advanced Features

There are a number of features of OPRS that are considered advanced, in the
sense that they are not required by the “standard application” but can be used
by in some particular situations. This chapter describes these features and
explain when they can be used and for which purpose.

10.1 OP Properties

Properties in OPs are basically information which is linked to the OPs and their
execution environment. Keep in mind that the value of a property can be any
term with evaluable functions and variables. As a result, the value of a property
is a run time value (i.e. the value of the property is the value resulting of its
evaluation at the time it is retrieved), and can heavily depend on the moment
at which it is evaluated.

Properties are very much linked to the use of Meta Level OPs. When one
writes Meta Level OPs, one often makes reference to some user-defined proper-
ties. Such properties can be priority, Bayesian information, utility information
or even resources they consume. As for Meta Level reasoning, properties form a
general powerful mechanism which is given to the user to implement any desired
control algorithm or heuristic.

10.2 User Hooks

There used to be two user hooks (one at the start of the kernel, another one
upon quitting) provided to the user to change global variables or to initialize its
own data structure, to initialize library, and symmetrically to clean up before
quitting. Now that the load external command (see [OPRS Kernel Miscella-
neous Commands], §2.13, page 42) exists, one can execute any arbitrary code
upon starting. Still, one can use the add user end kernel hook function to
add a function to be called before quitting the PRS kernel.

add user end kernel hook Kernel User Function

135

136 CHAPTER 10. ADVANCED FEATURES

void add user end kernel hook (PKV hook) is the function which
is called to add hook to the list of functions which are called by the
kernel upon exiting to eventually give a chance to the user to prop-
erly terminate services, close connections, free global structure or
memory, etc. They are executed in the order they are defined.

Start kernel hook can still be defined to give a chance to the user to set
his own global value predicate. You can put in it the assignment of inten-
tion list sort predicate to the address of your function. You can also change the
value of global variables such as main loop pool sec or main loop pool usec

(see [Important Variables], §G.1.2, page 334). This hook can be executed by
adding for example in the command file:
load external "user-kernel-hook" "start kernel user hook"

Example of possible content of the ‘user-kernel-hook.c’ :

void end_kernel_user_hook()

{

free_my_own_objects();

shutdown_my_own_server();

}

void start_kernel_user_hook()

{

intention_scheduler = &intention_scheduler_time_sharing;

main_loop_pool_sec = 0L;

main_loop_pool_usec = 10000L; /* 10 milliseconds */

create_my_widget_tree(x_oprs_top_level_widget);

create_my_own_objects();

start_my_own_server();

add_user_end_kernel_hook(end_kernel_user_hook);

}

10.3 User Code Error Handler

There are two functions provided to the user to report fatal or recoverable error
(their prototype is defined in ‘oprs-error f-pub.h’). It is strongly advised to use
these functions.

report fatal external error Kernel User Function

void report fatal external error (char *error message) is
the function used to report fatal errors. This function does not
return (because the error is considered to be fatal, and terefore the
execution cannot proceed from this point). In other words, it will
“jump” to a safe place and try to recover from the error. According
to the current state in which the error occurs the OPRS Kernel will
take some action to protect the operations still valid and running in

10.3. USER CODE ERROR HANDLER 137

the kernel. Nevertheless, most of the time, such an error will lead
to the failure/cancel of the intention in which it occured.

Many informations are displayed by the kernel on the error itself and
the various operations which resulted of this error.

The consequence of such fatal error may be so dramatic that you
should not attempt to continue execution. The problem which lead
to error should be fixed first.

Example:

Term *float_to_int_ef(TermList terms)

{

Term *res, *t1;

res = MAKE_OBJECT(Term);

t1 = (Term *)get_list_pos(terms, 1);

if (t1->type != FLOAT) {

report_fatal_external_error("Expecting a FLOAT in float_to_int_ef.");

}

res->type = INTEGER;

res->u.intval = (int)t1->u.doubleval;

return res;

}

report recoverable external error Kernel User
Function

void report recoverable external error (char *error message)

is the function used to report recoverable errors. This function re-
turns, and the user can then decide what to do, which reasonable
value to return, etc.

Here also, many informations are displayed on the screen to provide
the user with valuable hints as where the error occured and in which
condition.

Example:

Term *action_execute_command(TermList terms)

{

Term *term, *res;

res = MAKE_OBJECT(Term);

res->type = ATOM;

138 CHAPTER 10. ADVANCED FEATURES

term = (Term *)get_list_pos(terms,1);

if (term->type != STRING) {

report_recoverable_external_error("Expecting a STRING in action_execute_command.");

res->u.id = nil_sym;

} else {

PString command;

command = (char *)OPRS_MALLOC((strlen(term->u.string) + 2) * sizeof(char));

sprintf(command, "%s\n", term->u.string);

send_command_to_parser(command);

OPRS_FREE(command);

res->u.id = lisp_t_sym;

}

return res;

}

10.4 Intention Graph Scheduling

The OPRS Kernel provides a mechanism to schedule the root of the intention
graph, in parallel intention execution mode or not. To do so, the user needs to
define his own scheduler functions with the following prototypes:

my intention list scheduler Kernel User Function

Intention List my intention list scheduler (Intention List

il) is the prototype of an intention list scheduler. It takes an Inten-
tion List as argument and should return one (probably the same). In
any case, the first runnable intention in the returned list will become
the current intention.

intention scheduler Kernel Variable

extern PFPL intention scheduler is the global variable which
points at the appropriate function used when the system is not in
parallel intention execution. If it is set to NULL, then no scheduling
is used, and the sorting predicate may be used (if set).

intention par scheduler Kernel Variable

extern PFPL intention par scheduler is the global variable which
points at the appropriate function used when the kernel is in parallel
execution mode. If it is set to NULL, then no scheduling is used,
and all the root of the intention graph are executed.

Here is an example of how to set the scheduler (withdrawn from ‘default-
user-external.c’):

10.5. INTENTION GRAPH SORTING PREDICATE 139

void start_kernel_user_hook()

{

intention_scheduler = &intention_scheduler_time_sharing;

}

Here is an example of a scheduler function, which will schedule a new inten-
tion every 6 times it is called:

Intention_List intention_scheduler_time_sharing(Intention_List l)

{

static int loop = 0;

if (loop++ == 6) {

Intention *i = (Intention *)get_from_head(l);

add_to_tail(l,i);

loop = 0;

}

return l;

}

All these functions and examples are defined in ‘user-external.c’.

10.5 Intention Graph Sorting Predicate

The OPRS Kernel provides a mechanism to “sort” the root of the intention
graph under some user specified criteria.

This mechanism is used if and only if no scheduler is defined, and the kernel is
not in parallel intention execution mode. In other words, intention scheduler

has to be set to NULL, and the Parallel Intention Execution flag must be
off..

To define a sorting predicate, the user needs to define his own sorting func-
tions with the following prototype:

my intention list sort Kernel User Function

PBoolean my intention list sort (Intention *i1, Intention *i2)

is the prototype of an intention list sorting predicates. Note that the
intention root of the graph, which “maximizes” this predicate is the
one which will become the current intention.

Of course, the name can be changed, but it takes two pointers to an Intention
and returns a PBoolean (TRUE or FALSE).

intention list sort predicate Kernel Variable

extern PFB intention list sort predicate is the global vari-
able which points at the appropriate function. If it is set to NULL,
then the list is not sorted at all.

140 CHAPTER 10. ADVANCED FEATURES

Here is an example of how to modify the default sorting predicate (withdrawn
from ‘default-user-external.c’):

void start_kernel_user_hook()

{

intention_scheduler = NULL; /* Set it to NULL, or the sorting predicate

* will not be used at all. */

intention_list_sort_predicate = &my_intention_list_sort;

}

Here is an example of a sorting function, which will sort the intentions by
priority:

PBoolean my_intention_list_sort_example(Intention *i1, Intention *i2)

{

return (intention_priority(i1) > intention_priority(i2));

}

Note that, if you want to keep the intention list undisturbed by the sorting
algorithm, when the list is already sorted, then your sorting predicate must
return FALSE when two intentions are equivalent (in the previous example we
use > rather than >=).

All these functions and examples are defined in ‘user-external.c’.

10.6 Intending Goals Directly

There are more than one way to achieve a goal. The standard mechanism
consists in posting a goal, finding one or more applicable OPs for this goal.

However, there is at least one other way to intend a more imperative goal.
It is called “goal intending” as opposed to the previous method we called “ap-
plicable OP intending”. In the “goal intending” method, you directly intend a
new intention which has to achieve a particular goal. The kernel may discover
later that there are no applicable OPs to achieve this goal, but that will be seen
below.

The main difference is that you intend before even knowing if some OPs will
be applicable or not. The “goal intending” method is seldom used, but can be
very useful. For instance, one can post parallel goals, each of them in its own
intention by using this technique. An example of such program is given in the
‘fact-meta.opf’ file.

The meta level OP required to perform this goal intending is in the file
‘meta-intended-goal.opf’. The actions performed are defined in [Intending Goal
Actions], §7.7.1, page 118, and the functions to build these goals are defined in
[Goal Building Evaluable Functions], §6.1.9, page 107.

10.7. CURRENT AND QUOTE 141

10.7 Current and Quote

The current and quote mechanism is quite simple. Basically, one may want to
postpone or immediately run the evaluation of some expressions (presumably
in an evaluable function term) in a posted goal. For example, if one posts the
goal (! (foo (+ 3 4))), then the + operation could be carried on only when
required, presumably when the system checks if it is true in the database. As
long as it is possible, the system could try to achieve (! (foo (+ 3 4))).
In this particular case, it does not really make much difference, because (+ 3

4) is always 7, independently of when you are doing it. But let’s assume now
that we want to achieve a goal such as (? (> (pressure-of tk1) 245)), and
that the fluent pressure-of can return a different value for tk1 according to
the moment at which you ask for the value. Then, obviously the goal (? (>

(pressure-of tk1) 245)) can have a different interpretation according to the
moment at which you post and interpret it. . . As said earlier, by default, now
the kernel always evaluates evaluable functions (and their arguments) at posting
time (note that this is a new behavior, and it differs from SRI’s OPRS). But
the user can prevent a fluent to be evaluated at the time the goal is posted. To
do so, one just needs to use the quote “function” (actually, it is not really a
function but for this purpose, it can be considered as one). This quote function
defines a context in which none of the evaluable functions will be evaluated at
posting time, unless they are embedded in a current “function”.

To illustrate this mechanism, we shall consider the following example. If
you want to wait until 6 seconds have elapsed, in the old scheme (or if the
eval on post option is off), you post the goal (^ (>= (time) (+ (current

(time)) 6))). Because you really want to distinguish between the call to time

which will be done at “goal posting” time, and the call to time which is done
at “goal satisfaction” time. But now (by default or if the eval on post option
is on) you need to post: (^ (>= (quote (time)) (+ (time) 6))).

This mechanism is put under a flag control, that the user can set on or off
using the command set eval post on|off (see [OPRS Kernel Run Option
Commands], §2.6, page 34). As said earlier, the new default behavior is to
always evaluate the evaluable functions in a posted goal.

If this flag is set to off, the evaluation is done when required by the database,
or when a current is used. One drawback of this approach (and this is the rea-
son why the default mechanism is to evaluate every evaluable functions) is that
it forces the user to use current whenever he wants to force an evaluation. For
example, if you program factorial without using current, the real computation
(the n - 1 multiplication) may be delayed until “printing” or until you affect
the value to some variable (the = OP does an explicit current on its second ar-
gument). Another drawback, is that evaluable functions can then be evaluated
more than once... If this evaluable function runs with considerable overhead,
this my lead to very poor performance.

If it is set to on, which is its default value, any evaluable function would
by default be evaluated at goal posting time, unless it is in the quote function.
To keep the same semantics, the goal (^ (>= (time) (+ (current (time))

142 CHAPTER 10. ADVANCED FEATURES

6))) would then become: (^ (>= (quote (time)) (+ (time) 6))).

10.8 Critical Section

A critical section mechanism is provided in OPRS. Its use is very simple but
should be reserved to very short sequences of goal execution, for which mutual
exclusion is required (to allocate resources, for example).

During the critical section, the current intention and the current thread
cannot be changed, and remains the same. Moreover, external events are not
parsed (they are kept in the input buffer though), and meta level facts are not
concluded. However, facts and goals posted by the current thread are taken into
account.

A number of situations will break the critical section, i.e. they will force
the kernel to exit the critical section state. This will happen if the thread in
critical section joins (and it is not the last thread to join). Similarly, if you
perform active maintenance in a critical section, the system will break it. You
may also get warning if you are doing suspicious things such as spliting in a
critical section...

Critical sections are not re-entrant, thus, it is forbidden to open a new critical
section while you are already in one (there is little interest in doing so). Keep
in mind that while the kernel is in a critical section, external events are not
parsed, and the reaction time of the system is therefore increased.

To start and end a critical section, use the start-critical-section and
the end-critical-section action. Corresponding OPs are provided in ‘new-
default.opf ’.

10.9 Universal Quantification of Variables

Universal quantification of variables can be obtained by using the all, n-all
and n-all-list functions (see [Lisp Evaluable Functions], §6.1.7, page 102).

These functions return lists of binding which universally quantify some vari-
ables.

10.10 User Pointers

It is possible for a user to define its own data structure to manipulate and to
be manipulated by the kernel. For example, one can define a robot path as
a particular C data structure, which can then be manipulated by its pointer.
Appropriate actions, evaluable functions and evaluable predicates can then re-
spectively be used to create this objects, to access slots or test properties of this
object. One issue arising of this facility is to determine which objects should be
manipulated as user-defined objects (which are thus opaque to the kernel) and
which objects should be represented explicitly in the database. This trade off is

10.11. ACTION SLICING 143

a readability/efficiency/accessibility issue. For example, the information hidden
in user-defined objects cannot be easily used to trigger procedure execution.

10.11 Action Slicing

Long user-defined actions can be time sliced. By returning a special token
:wait, they are not considered by the kernel as completed and will be called
again to finish their duties. An action can be time sliced in as many parts as
the user decides when it programs it. For example, if it writes an action which
perform some long computation such as writing a collection of data in a file, it
may decides to write one object at a time and to call it as many time as there
are objects. Keep in mind that the reactivity of the application depends of the
longest action/evaluable functions of your application. Therefore, to increase
the reactivity of your kernel, you may have to time slice the execution of actions.

See action first call and action number (see [Intention Manipulation
Functions], §G.1.8, page 340).

144 CHAPTER 10. ADVANCED FEATURES

Part IV

OPRS-Server

145

Overview of the
OPRS-Server

The OPRS-Server is an important tool in the OPRS development environment.
The philosophy behind OPRS prevents the user from interacting synchronously
with a OPRS Kernel. However, one should be able to issue commands to a
running kernel without disturbing the OPRS Kernel main loop. This is where
the OPRS-Server comes in. The OPRS-Server is a program which enables the
user to interact with a OPRS Kernel as much as possible. Moreover, the server
allows the user to create new kernels, kill them, and so on. . . As most OPRS
Development Environment programs, the OPRS-Server will start the Message
Passer if necessary.

The OPRS Server enables the user to communicate directly with OPRS Ker-
nels. Indeed, OPRS Kernels must be able to execute their procedures without
being disturbed synchronously by the user. That is the reason why, the user
can communicate with OPRS Kernels through the OPRS Server. This does
not apply to X-OPRS Kernel with which the user can communicate using the
X11/Motif interface.

147

148

Chapter 11

How to Use the
OPRS-Server

11.1 Arguments of the OPRS-Server

Usage:

oprs-server [-X] [-l upper|lower|none] [-i server-port-number]

[-m message-passer-hostname]

[-j message-passer-port-number]

[-l upper|lower|none]

All the arguments are optional.

-X to specify that all the OPRS Kernels created by using the make command
in the OPRS-Server, will be X-OPRS Kernels.

-i to specify the port on which the OPRS-Server is listening to connections
from OPRS Kernels.

-m to specify the hostname on which the Message Passer is running (or will be
started). If the OPRS-Server cannot connect (even after starting it) to
this hostname on the specified port, then the program exits with an error
message.

-l upper|lower|none can be used to print and parse all the symbol and id in
upper case, lower case or in no particular case.All the kernels created by
this OPRS-Server will inherit this property.

-j to specify the port on which the Message Passer is listening.

149

150 CHAPTER 11. HOW TO USE THE OPRS-SERVER

11.2 OPRS-Server Environment Variables

There are a number of environment variables which can be used to customize
the OPRS-Server or to define default arguments. Arguments passed using the
command line have precedence on those acquired from environment variables.

OPRS MP PORT is used to specify the port on which the Message Passer will listen
to connection. It is used by the OPRS Kernel, the X-OPRS Kernel, the
OPRS-Server and the Message Passer. It is equivalent to the -j command
line argument. Example:

setenv OPRS_MP_PORT 3456

OPRS MP HOST is used to specify the host on which the Message Passer will listen
to connection. It is used by the OPRS Kernel, the X-OPRS Kernel, the
Message Passer and the OPRS-Server. It is equivalent to the -m command
line argument. Example:

setenv OPRS_MP_HOST machine.site.domain

OPRS SERVER PORT is used to specify the port on which the OPRS-Server will lis-
ten to connection. It is used by the OPRS Kernel, the X-OPRS Kernel and
the OPRS-Server. It is equivalent to the -i command line argument. Ex-
ample:

setenv OPRS_SERVER_PORT 3457

OPRS ID CASE is used to specify if the program should upper case, lower case
or should not change the case of the parsed Id. This is equivalent to the
-l option. The possible values are lower, upper or none: Example:

setenv OPRS_ID_CASE none

11.3 Commands of the OPRS-Server

Here is the list of the commands the OPRS-Server recognizes.

11.3.1 OPRS-Server Commands to Handle OPRS Kernel

• make name. To create a OPRS Kernel named name (in a separate Unix
process).

• make-x name. To create a X-OPRS Kernel named name (in a separate
Unix process).

11.3. COMMANDS OF THE OPRS-SERVER 151

• kill name. To kill the OPRS Kernel named name. This can only work if
the OPRS Kernel has been started with the make command.

• accept. To accept the connection of a new OPRS Kernel (or a X-OPRS
Kernel). This is used whenever a kernel has been started from a Unix shell
(from a remote host for example) and is waiting for the OPRS-Server to
accept its connection. There is a common mistake when one uses the
accept command. If you have started a OPRS Kernel and the connection
to the OPRS-Server does not work after an accept, you probably started
this server with a port number for it or the Message Passer which is not
the default one. Remember to specify these numbers in the command line
of the OPRS Kernel you start.

• connect name. To connect the standard input to the OPRS agent named
name. This puts the OPRS agent in command mode.

• disconnect. To instruct the connected OPRS to leave the stdin and give
it back to the OPRS-Server. The OPRS client will return in run mode. In
fact, this command is not a OPRS-Server command but a OPRS Kernel
command.

• reset kernel name. To send a reset kernel command to the OPRS
Kernel named name (see [OPRS Kernel Miscellaneous Commands], §2.13,
page 42).

• reset parser name. To reset the parser of the OPRS Kernel named
name.

11.3.2 OPRS-Server Communication Commands

• send name message. To send the message to the OPRS named name.
Example: send foo (bar boo 3).

• add name goal|fact. To send a goal or a fact to the OPRS named
name. This is how you can post new facts or new goals in a OPRS client.

Example for a fact: add foo (bar boo 3) or for a goal: add foo (!

(print-factorial 3)).

• transmit name string. To send a string command to a OPRS client
named name. This is how you can send commands to a OPRS client with-
out connecting to it. If the command you want to send contains double
quotes (such as include "data/foo.inc"), then you must backslash dou-
ble quote like in: transmit foo "include

"data/foo.inc

" ".

• transmit all string. To send a string command to all the OPRS
Kernel clients named connected to this OPRS-Server. The syntax of the
string is similar to the one used in the transmit command.

152 CHAPTER 11. HOW TO USE THE OPRS-SERVER

• broadcast message. To send the message to all the OPRS connected
to this OPRS-Server’s Message Passer. Example: broadcast (bar boo

3).

11.3.3 OPRS-Server Miscellaneous Commands

• q|quit|exit|EOF. To quit the OPRS-Server. This also kills all the OPRS
clients started by this OPRS-Server.

• include file name. To execute all the commands in file name. The
recommended extension for these files is ‘.inc’. Include file can contain
other include directives. Only two commands are forbidden in include file:
connect and disconnect (see [Include File Format], §2.14, page 43).

• show version|copyright. To print the version or the copyright notice.

• help|h|?. To print some on-line help.

Part V

Message Passer

153

Overview of the Message
Passer

The Message Passer is the program which allows an application to communicate
with OPRS Kernels and X-OPRS Kernels. The Message Passer has one and
only one function: it passes messages between various programs which have
been registered. Most of the time, it is started by the OPRS-Server, a X-OPRS
Kernel or a OPRS Kernel, so you do not have to call it directly. However,
you can if you want, start it on any host, with any port on which to listen.
In this case, you have to call it with the port number you want it to listen.
See [Argument of the Message Passer], §12.1, page 157, for details. There is a
companion program to the Message Passer: kill-mp which can be used to kill
the Message Passer. Moreover, if the Message Passer has no client registered
for more than five hours, it will exit (to make sure your machine is not loaded
by unused Message Passer processes).

The main characteristic of the Message Passer are:

• Communication using TCP/IP, the most popular communication media
and protocol on the Unix operating system.

• Communication on heterogeneous network. One can have a X-OPRS Ker-
nel on a Sparc Station communicating with a OPRS Kernel on a DEC
Station, while the application run on a VAX.

• Various protocols available between the simulators, the applications and
the Message Passer.

• Easy to use from your application, using registration and communication
functions provided in a library .

The Message Passer is identified by a host name and a port number. In
other words, one can potentially run as many Message Passer as desired on a
network of heterogeneous machines. Usually, one will run one Message Passer
for one OPRS application. This Message Passer serves as the central server for
messages and information passing between the different programs involved in a
specific application.

155

156

By default the Message Passer listens on the port 3300, however, there are
means to get it to listen onto another port. This new port can currently be
specified when you start the OPRS-Server using the appropriate argument (see
[Arguments of the OPRS-Server], §11.1, page 149, for details), or when you start
the Message Passer on its own.

Chapter 12

How to Use the Message
Passer

The various programs of the OPRS development environment connect to the
Message Passer without any intervention of the user. However, if you write
your own module and want it to communicate with the Message Passer, then
you need to register it and follow a particular protocol.

The registration mainly consists in connecting to a public TCP/IP Internet
socket, and in sending the desired protocol and its name. There are two possible
protocols for connection to the message passer. After the registration, the client
(which in most cases is a OPRS Kernel) is supposed to check from time to time
its mp-socket by selecting it (in C) or listening to it (in Lisp). If something is
present, a message is available and should be read promptly. Similarly, when
a message has to be sent to another OPRS kernel, or to an external module
which has registered to the Message Passer, it is just a matter of writing two
strings on the socket mp-socket: one for the name of the recipient and one for
the message itself. These strings are sent in a particular format, and the user
should not attempt to send them directly but instead use the library functions
provided for this very purpose.

Note that each module needs to connect to the Message Passer with a unique
name.

The Message Passer can be killed or shutdown using the kill-mp program.

12.1 Argument of the Message Passer

Although it is seldom started from the Unix shell, one can start the Message
Passer on its own. In this case, you have to specify the proper arguments in the
OPRS-Server command line (see [Arguments of the OPRS-Server], §11.1, page
149) and the OPRS command line (see [Arguments to the oprs Command], §1.2,
page 22) .

Usage:

157

158 CHAPTER 12. HOW TO USE THE MESSAGE PASSER

mp-oprs [-j message-passer-port-number]

[-l filename] [-x] [-v]

All the arguments are optional.

-j to specify the port on which the Message Passer is listening.

-l filename can be used to log in the file ‘filename’ all the messages passed
by the Message Passer.

-v to specify a verbose mode for the Message Passer. In verbose mode, all
messages passed by the Message Passer are traced.

-x to specify that any new registration made to the Message Passer with an
already registered name lead to the deconnection of the old client. The
default behavior is to refuse the connection to client with name already
used.

12.2 Message Passer Environment Variables

There is one environment variable which can be used to customize the Message
Passer. However, the argument passed using the command line has precedence
on the one acquired from the environment variables.

OPRS MP PORT is used to specify the port on which the Message Passer will listen
to connection. It is used by the OPRS Kernel, the X-OPRS Kernel, the
OPRS-Server and the Message Passer.
Example:

setenv OPRS_MP_PORT 3456

12.3 Argument of the Message Passer Killer

One can use the kill-mp program to kill a Message Passer. Note that this
program can kill any Message Passer you started on any host. So this command
should be used with extreme caution. The Message Passer will check that the
Message Passer Killer program has been started by the same user than the one
who started it (the Message Passer). Moreover, the super user (the user root)
can kill any Message Passer.

Usage:

kill-mp [-m message-passer-hostname]

[-j message-passer-port-number]

All the arguments are optional.

12.4. MESSAGE PASSER KILLER ENVIRONMENT VARIABLES 159

-m to specify the hostname on which the Message Passer is running (and will
be killed).

-j to specify the port on which the Message Passer is listening (and will con-
nected to to be killed).

12.4 Message Passer Killer Environment Vari-
ables

There are two environment variable which can be used to customize the Message
Passer Killer. However, the argument passed using the command line have
precedence on the one acquired from the environment variables.

OPRS MP PORT is used to specify the port on which the Message Passer Killer
connect to kill the Message Passer. It is equivalent to the -j command
line argument.
Example:

setenv OPRS_MP_PORT 3456

OPRS MP HOST is used to specify the host on which the Message Passer Killer
will connect to kill the Message Passer. It is equivalent to the -m command
line argument.
Example:

setenv OPRS_MP_HOST machine.site.domain

12.5 How to Connect to the Message Passer from
OPRS-Server and OPRS Kernel

There is nothing particular to do for the OPRS-Server or a OPRS Kernel to
use the Message Passer. For all these programs, the registration to the Message
Passer is mandatory and automatic. Upon starting, they register to the Mes-
sage Passer, and they regularly check if something is present for them on the
appropriate socket.

12.6 How to Connect to the Message Passer from
an External Module

Any external module or program can register to the Message Passer. It is even
the only way for an arbitrary program to communicate with OPRS Kernels.
By default, the Message Passer always reports on stderr the registration of a
new client. There are two different protocols: the MESSAGES PT protocol and

160 CHAPTER 12. HOW TO USE THE MESSAGE PASSER

the STRINGS PT protocol. When you establish a connection, you need to specify
the protocol connection. Note that if you use the registration function without
protocol specification, the rule to define the protocol is the following. The
MESSAGES PT protocol is the default one, to use the STRINGS PT protocol, you
need to suffix the name of your module with a /. So if your module is called foo,
you should send the string foo/ on the socket for registration. However, the
module will be known under the foo name. This mechanism remains for upward
compatibility. In any case, you should try to use the registration function with
the protocol specification.

mp port, external register to the mp host, external register to the mp

are not supported anymore.

The registration functions and variables are provided in the ‘libmp.a’ library
for this purpose. Their prototype is defined in ‘mp-pub.h’.

The following protocol types are currently supported:

typedef enum {MESSAGES_PT, STRINGS_PT} Protocol_Type;

mp socket MP Library Variable

int mp socket is the Message Passer socket on which a program
can send messages to and receive messages from the Message Passer.

mp name MP Library Variable

char * mp name is the name of the client as set by the Message
Passer. It is usually the name you gave as argument.

external register to the mp host prot MP Library
Function

int external register to the mp host prot (char *name, char

*host name, int port, Protocol Type prot) registers the call-
ing program to the Message Passer under the name name, on the
host specified in host name, on the port port, with the protocol
specified in port.

external register to the mp prot MP Library
Function

int external register to the mp prot (char *name, int port,

Protocol Type prot) is similar to the previous function except
that the host on which the Message Passer is expected to run is the
same as the one on which the program runs.

These two functions set and return the value of mp socket. If this value is
-1, then the connection attempt failed.

12.7. MESSAGES FORMAT 161

12.7 Messages Format

The format of data between sender and recipient using the Message Passer de-
pends on the established protocol. It is up to each module to parse and interpret
them as they arrive. From the sender to the Message Passer, the format is al-
ways two strings (one for the recipient and one for the message). However, from
the Message Passer to a module, it depends. In MESSAGES PT mode, the string
"receive <name-sender> <message>" is sent as is. In STRINGS PT mode, the
name and the message are sent as two separate strings, each string being sent
as an int (representing its size) and a byte stream for the string itself.

For example, in MESSAGES PT mode, if the OPRS Kernel FOO wants to send
the message (position valve1 closed) to the OPRS Kernel BAR, then it calls
the function send message. The Message Passer sees two strings coming on FOO’s
socket:
"BAR" the recipient, and "(POSITION VALVE1 CLOSED)" the printed represen-
tation of the message. After processing it, the Message Passer sends one string
to BAR:
"receive FOO (POSITION VALVE1 CLOSED)" which is in fact interpreted as a
command by the BAR kernel that the message (POSITION VALVE1 CLOSED) has
been received from the kernel FOO.

In STRINGS PT mode, the name and the message are sent as two separate
strings, each string being sent as an int for its size and a byte stream for the
string.

Here are the functions provided to read, write, and send message. Their
prototype is defined in ‘mp-pub.h’.

read string from socket MP Library Function

PString read string from socket (int socket, int *size) is
the function, in the ‘libmp.a’ library, which can be used to read a
string from the mp-socket in STRINGS PT protocol. This function
needs to be called twice, one time for the name of the sender, and
one time for the text of the message. The size parameter is a return
parameter to tell you how big the string is. Do not forget to free the
result with the free function.

send message string MP Library Function

void send message string (PString message, PString rec) is
the function, in the ‘libmp.a’ library, which can also be used to send a
message message to the recipient rec. This function send message string

is preferred to the former function write string to socket.

multicast message string MP Library Function

void multicast message string (PString message, unsigned int

nb recs, PString *recs) is the function, in the ‘libmp.a’ library,
which can be used to send a message message to a list of nb recs

recipient which names are in the array of PString recs.

162 CHAPTER 12. HOW TO USE THE MESSAGE PASSER

broadcast message string MP Library Function

void broadcast message string (PString message) is the func-
tion, in the ‘libmp.a’ library, which is used to send a message message
to all the connected agents, except the sender.

12.8 Example of C Code to Connect to the Mes-
sage Passer

This code comes from the Truck Loading Demo (See [Truck Loading Exam-
ple], §23.1, page 269), and can be found in the file ‘demo/truck-demo/src/oprs-
interface.c’.

void demo_init_arg(int argc, char **argv)

{

int c, getoptflg = 0;

int mpname_flg = 0, mpnumber_flg = 0, demoname_flg = 0;

struct hostent *check_hostname;

int mp_port;

extern int optind;

extern char *optarg;

int maxlength = MAX_HOST_NAME * sizeof(char);

while ((c = getopt(argc, argv, "m:j:n:h")) != EOF) {

switch (c)

{

case ’m’:

mpname_flg++;

mp_host_name = optarg;

break;

case ’j’:

mpnumber_flg++;

if (!sscanf (optarg, "%d", &mp_port))

getoptflg++;

break;

case ’n’:

demoname_flg++;

demo_name = optarg;

break;

case ’h’:

default:

getoptflg++;

}

12.8. EXAMPLE OF C CODE TO CONNECT TO THEMESSAGE PASSER163

}

if (getoptflg) {

fprintf(stderr, DEMO_ARG_MESSAGE);

exit(1);

}

if (mpname_flg){

if ((check_hostname = gethostbyname (mp_host_name)) == NULL){

fprintf(stderr, "Invalid mp host name \n");

exit (1);

}

} else {

mp_host_name = (char *)malloc (maxlength);

if (gethostname(mp_host_name, MAX_HOST_NAME) != 0) {

fprintf(stderr, "Error in gethostname \n");

exit(1);

}

}

if (!mpnumber_flg)

mp_port = MP_PORT;

if (!demoname_flg){

demo_name = default_demo_name;

connect_name = default_connect_name;

} else {

int i, length = strlen (demo_name);

if (demo_name[length-1] != ’/’) { /* The name doesn’t end with a

’\’, add it to get the

right message format . */

connect_name = (char *)malloc (length +2) ;

for (i = 0; i< length ; i++){

if (islower(demo_name [i]))

connect_name[i] = toupper (demo_name[i]);

else

connect_name[i] = demo_name[i];

}

connect_name[length] = ’/’;

connect_name[length + 1] = ’\0’;

}

}

}

void send_message_to_oprs (char *message)

164 CHAPTER 12. HOW TO USE THE MESSAGE PASSER

{

char trace_message[BUF_SIZE];

if (!demo->connected) {

demo_error ("send_message: You are not connected ");

return;

}

send_message_string(message, OPRS_NAME);

sprintf (trace_message, "Send: %s\n", message);

oprs_message(trace_message);

}

void get_oprs_message (XtPointer client_data, int *fid, XtInputId id)

{

char trace_message[BUF_SIZE];

int length;

char *sender;

char *message;

sender = read_string_from_socket(*fid, &length);

message = read_string_from_socket(*fid, &length);

if (decode_message (message, sender) != 0){

sprintf (trace_message, "Received %s from %s \n", message, sender);

demo_error (trace_message);

}

free(sender);

free(message);

}

void connect_to_mp ()

{

if ((mp_socket = external_register_to_the_mp_host_pfrot(connect_name,

mp_host_name, mp_port, STRINGS_PT)) == -1) {

demo->connected = FALSE;

demo_warning ("Unable to register to the Message Passer");

} else {

demo_message ("You are connected to the Message Passer\n");

demo->connected = TRUE;

XtAppAddInput (app_context,

mp_socket,

XtInputReadMask,

get_oprs_message, /* the read function */

12.9. EXAMPLE OF LISP CODE TO CONNECT TO THEMESSAGE PASSER165

NULL);

}

}

12.9 Example of Lisp Code to Connect to the
Message Passer

Here are the foreign function definitions to register a Lisp program to the Mes-
sage Passer, and to send messages to the Message Passer:

(in-package "OPRS" :use ’("LISP" "LUCID-COMMON-LISP"))

;;; Loading

(defun i-oprs-load ()

(load-foreign-libraries

nil

(list "/usr/local/oprs/lib/libmp.a"

"-lm"

"-lc")))

;;; functions base

(def-foreign-function

(i-external-register-to-the-mp

(:name "_external_register_to_the_mp")

(:language :c)

(:return-type :signed-32bit))

(name :string))

(def-foreign-function

(i-external-register-to-the-mp-host

(:name "_external_register_to_the_mp_host")

(:language :c)

(:return-type :signed-32bit))

(name :string)

(host :string))

(def-foreign-function

(i-send-message-string

(:name "_send_message_string")

(:language :c)

(:return-type :null))

(msg :string)

166 CHAPTER 12. HOW TO USE THE MESSAGE PASSER

(target :string))

(i-oprs-load)

Here are some Lisp functions to be used to communicate with the Message
Passer. Note that as OPRS uses a Lisp like syntax, we can use read to read the
message coming from the OPRS Kernels.

(in-package "OPRS" :use ’("LISP"))

(defvar *mp-stream* nil)

(defun valid-sd (sd)

(and (integerp sd) (> sd 0)))

(defun already-registered ()

(streamp *mp-stream*))

(defun oprs-register-to-mp (name &optional (machine (machine-instance)))

(check-type name string)

(check-type machine string)

(when (already-registered)

(warn "Connection to the Message Passer already established.")

(return-from oprs-register-to-mp nil))

(let ((sd (i-external-register-to-the-mp-host name machine)))

(cond ((valid-sd sd)

(setf *mp-stream* (make-lisp-stream :input-handle sd

:output-handle sd

:auto-force t))

t)

(t (warn "Failed to connect to the Message Passer."))

nil)))

(defun oprs-close ()

(break-if-not-registered)

(close *mp-stream*)

(setf *mp-stream* nil))

;;;---

;;; writing

;;;---

(defun oprs-write (&key target msg)

(check-type target string)

(break-if-not-registered)

(i-send-message-string (format nil "~S" msg) target))

12.9. EXAMPLE OF LISP CODE TO CONNECT TO THEMESSAGE PASSER167

;;;---

;;; reading

;;;---

(defun oprs-listen ()

(break-if-not-registered)

(loop

(if (and (listen *mp-stream*)

(member (peek-char nil *mp-stream*)

’(#\space

#\newline

#\linefeed

#\return

#\page

#\backspace

#\tab

#\)

)))

(read-char *mp-stream*)

(return)))

(listen *mp-stream*))

(defstruct oprs-msg

sender

contents

)

(defun oprs-read ()

(break-if-not-registered)

(if (oprs-listen)

(progn

(read *mp-stream*) ; This is to remove the "receive" keyword

(make-oprs-msg :sender (read *mp-stream*)

:contents (read *mp-stream*)))

:NO-MSG))

(defun break-if-not-registered ()

(unless (already-registered)

(break "No connection with the Message Passer.")))

Here are the entries you may want to export out of the OPRS package.

(in-package "OPRS" :use ’("LISP" "LUCID-COMMON-LISP"))

168 CHAPTER 12. HOW TO USE THE MESSAGE PASSER

(defvar *oprs-exports*)

(eval-when (load eval compile)

(setf *oprs-exports*

’(

oprs-register-to-mp

oprs-close

oprs-write

oprs-listen

oprs-read

oprs-msg-sender

oprs-msg-contents

)))

(export *oprs-exports*)

12.10 Errors Reported by the Message Passer

A certain number of errors can be reported by the Message Passer. In general,
the Message Passer is very verbose and notifies the user of any unexpected
event or situation. Whenever it is possible, the reported message indicates the
host and the port number on which this Message Passer is running. The most
common problems are:

"Disconnecting the client: %s from the message passer." This usually
happens when a client died and the communicating socket has been closed.
When the Message Passer realizes this, it prints this message.

"Registering the client: %s with protocol: %s." is printed upon suc-
cessful connection to the Message Passer.

"logging output in file ‘%s’." is printed whenever the Message Passer log
its output to a file.

"nobody registered for more than %d seconds, mp-oprs (%d): exit."

is printed when the Message Passer exits when there is no connection and
no new connection have been made in a certain amount of time.

"already has a client named: %s. Denying registration." This prob-
lem is reported if a new client tries to register with a name already used
by somebody else.

"EOF in get and send message (recipient) from %s." This error is reported
when the Message Passer gets an End of File while reading the name of
the recipient on a socket. Most often it appears when a client dies.

12.10. ERRORS REPORTED BY THE MESSAGE PASSER 169

"EOF in get and send message, (message) from %s." This error is reported
when the Message Passer gets an End of File while reading the message
part of a pair recipient-message on a socket.

"A message has been sent to %s, but no such agent exists." This er-
ror is reported if a message is sent to a an unknown client.

"unknown message type in get and send message from %s." This error oc-
curs whenever a message with an unknown type is received by the message
passer.

"Disconnecting the client: %s from the message passer." This message
is printed when a client is disconnected by the Message Passer.

"kill request, checking identity." A kill request has been received by
the Message Passer which checks if it has been sent by an authorized
client.

"denying kill-mp, you are not the user who started this message passer"

is printed when a the client which sent the kill request is not authorized.

"shutting down the message passer socket." is printed when the Message
Passer exit after a kill request has been sent.

"A message could not be delivered to %s." This error is reported if a mes-
sage cannot be properly delivered to its recipient for some unknown reason.

170 CHAPTER 12. HOW TO USE THE MESSAGE PASSER

Part VI

X-OPRS Kernel

171

Overview of the X-OPRS
Kernel

The X-OPRS Kernel is an important program of the OPRS Development Envi-
ronment pacopge: it has all the characteristics of the OPRS Kernel, but better,
it can execute OPs and procedures (i.e. graphically trace them) under the X11
Window/Motif interface.

X-OPRS Kernel is the X11/Motif version of the OPRS Kernel. It is func-
tionally identical to the OPRS Kernel, but allow the user to graphically follow
the execution of the procedures, as well as the evolution of the tasks graph. Us-
ing the graphical user interface, one have access to the underlying OPRS Kernel
to perform the following operations:

• To graphically follow the execution of selected procedures

• To graphically follow the evolution of the current tasks of the system,

• To select the procedure to be traced,

• To consult the database,

• To stop and resume the execution of the kernel, or to execute step by step
some selected procedures,

• To establish new goals or to conclude new facts in the database

• To select the various operations of the kernel to be traced,

• To select the run-time options of the kernel,

• To load new procedures or new databases,

• To access an on-line help and documentation.

You can call this program directly from an Unix shell or you can call it
directly from the OPRS-Server when you execute the make-x command, or
with the make command when the OPRS-Server has been started with the -X

argument (see [Arguments of the OPRS-Server], §11.1, page 149).

173

174

X-OPRS Kernel contains the OPRS Kernel. In fact, the kernel part of X-
OPRS is the OPRS Kernel. The OPRS main loop is running interleaved with the
Xt Application Main Loop. Note that the OPRS Kernel has better performance
than its X11 counterpart (because of the absence of the Xt Application Main
Loop). Any performance study should be made with the OPRS Kernel alone
(except, of course, if the goal is to evaluate the performance of the X interface).

One interesting feature of the X-OPRS Kernel is that you can interact with
the kernel more easily than with the OPRS Kernel. With the OPRS Kernel
you can only interact with the help of the OPRS-Server or by connecting to
the OPRS itself. With the X-OPRS Kernel however, the Xt Main Loop, which
runs interleaved with the OPRS main loop, allows you to do “asynchronous”
operations with the running kernel. Therefore, it is not necessary (nor is it
permitted) to connect (see [Commands of the OPRS-Server], §11.3, page 150)
to a X-OPRS Kernel.

There is another program, oprs-cat, which runs when you run an X-OPRS
Kernel. Its goal is to echo on its stdout whatever is sent on its stdin. . . This
is used internally by X-OPRS to display text trace in the Text Trace Pane.

Chapter 13

How to Use the X-OPRS
Kernel

The X-OPRS Kernel is used exactly as its tty version, the OPRS Kernel (see
[How to Use the OPRS Kernel], §1, page 21), and the argument available are
the same (see [Arguments to the oprs Command], §1.2, page 22). Note however
that a number of Xt arguments are available and can be used by the user (see
[Xt Command Line Arguments], §L.1, page 383). Moreover, there are a number
of specific arguments to the X-OPRS Kernel which we now introduce.

-log filename can be used to log in the file ‘filename’ all the outputs produced
by the kernel and appearing in the text window.

-pwt can be used to print the X-OPRS Kernel widget tree (see [X-OPRS Motif
Widgets Hierarchy], §L.2.3, page 384) . This can be useful if you do not
have the documentation at hand and still want to now the name or type
of a particular widget.

-peo (which stands for Print English Operator) can be used to parse and print
the temporal operator in english instead of the single letter. It will parse
and print achieve instead of !, and wait instead of ^ and so on. The
parser understands both syntaxes, but the printer will output the english
form. This is equivalent to the -p argument of the OPRS Kernel.

Various commands can be used to control the execution of the X-OPRS
Kernel. These commands are grouped into two sets: the “Menubar” and the
“Control and Status Panel”.

13.1 X-OPRS Kernel Environment Variables

There are a number of environment variables which can be used to customize
the X-OPRS Kernel or to define default arguments. Arguments passed using the
command line have precedence on those acquired from environment variables.

175

176 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

OPRS DATA PATH is used to specify a data path, i.e. a colon separated list of
directories where the kernel will look for data files (‘.inc’, ‘.opf ’ and ‘.db’).
It is used by the OPRS Kernel and the X-OPRS Kernel. It is equivalent
to the -d command line argument.
Example:

export OPRS_DATA_PATH=./data:/usr/local/share/openprs/data:${HOME}/data

OPRS DOC DIR is used to specify the location of the online OPRS Development
Environment documentation. It is used by the X-OPRS Kernel and the
OP Editor. Example:

export OPRS_DOC_DIR=/usr/local/share/doc/openprs

OPRS MP PORT is used to specify the port on which the Message Passer will listen
to connection. It is used by the OPRS Kernel, the X-OPRS Kernel, the
OPRS-Server and the Message Passer. It is equivalent to the -j command
line argument. Example:

setenv OPRS_MP_PORT 3456

OPRS MP HOST is used to specify the host on which the Message Passer will listen
to connection. It is used by the OPRS Kernel, the X-OPRS Kernel and
the OPRS-Server. It is equivalent to the -m command line argument.
Example:

setenv OPRS_MP_HOST machine.site.domain

OPRS SERVER PORT is used to specify the port on which the OPRS-Server will
listen to connection. It is used by the OPRS Kernel, the X-OPRS Kernel
and the OPRS-Server. It is equivalent to the -i command line argument.
Example:

setenv OPRS_SERVER_PORT 3457

OPRS SERVER HOST is used to specify the host on which the OPRS-Server will
listen to connection. It is used by the OPRS Kernel and the X-OPRS
Kernel. It is equivalent to the -s command line argument. Example:

setenv OPRS_SERVER_HOST machine.site.domain

OPRS ID CASE is used to specify if the program should upper case, lower case
or should not change the case of the parsed Id. This is equivalent to the
-l option. The possible values are lower, upper or none:
Example:

setenv OPRS_ID_CASE none

13.2. WINDOWS AND PANES OF THE X-OPRS KERNEL 177

Figure 13.1: X-OPRS Window

13.2 Windows and Panes of the X-OPRS Kernel

As shown on Figure 13.1, panes and menus are present in the default X-OPRS
configuration. The different menus and control panels are explained in the
[Menubar], §13.3, page 179, and in the [Control and Status Panel], §13.4, page
201.

13.2.1 Text Pane

This pane is located on the upper left part of the X-OPRS frame. It is used
for any Text output. The outputs can be generated either by selected trace,
or by the OPRS Kernel itself. This pane does not accept any input. The text
contained in this pane is scrollable and previous output can be re displayed
using the scroll bars. However, for memory allocation reasons, the size of the
buffer corresponding to this text is limited but can be changed by the user (see
[Change Size Text Pane], §13.3.6, page 201).

178 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.2: Specific Intention Trace Window

13.2.2 Graphic OP Pane

This pane is used to display the tracing of executing OPs when the appropriate
trace flags are on. It can also be used to display a particular OP (see [Display
Menu], §13.3.6, page 200). The user can use the scroll bars to change the view
port of this pane. He can also click on and drag the window himself to move
the view port around.

In this pane, if you left click on a goal, or an invocation part, or an effect
part, the X-OPRS Kernel will propose a list of relevant OP (among the OP
currently loaded in the X-OPRS Kernel). This is very convenient to jump from
one OP to the OPs which may achieve a similar goal or which may achieve a
subgoal of this procedure.

13.2.3 Graphic Intention Pane

This pane is used to display the tracing of Intentions and Tasks when the ap-
propriate trace flags are on. The user can use the scroll bars to change the view
port of this pane. He can also click on the window himself to move the view
port around.

If you right click on an intention in the intention graph a window display-
ing the traces (OP text traces, OP success and failures, etc.) specific to this
intention will appear (as shown on Figure 13.2).

If you middle click on an intention a Text Window Dialog Box is poped up
and contains the status of the selected intention (see Figure 13.3). This dialog

13.3. MENUBAR 179

Figure 13.3: Show Intention Dialog Box

Figure 13.4: X-OPRS Menu Bar

box is not modal and has an Update button which can be used to update the
window to display the current intention graph.

13.3 Menubar

The Menu Bar (Figure 13.4) contains different buttons from which cascade
menus pop when they are selected with the mouse.

13.3.1 File Menu

The File menu (Figure 13.5) contains all the commands dealing with files. Most
of these commands have their counterpart in the OPRS Kernel (see [OPRS
Kernel Commands], §2, page 29).

Include

This command is used to load an include file. The default (and recommended)
extension for these files is ‘.inc’ (see [Include File Format], §2.14, page 43).
When this command is selected, a file selection dialog box appears to allow the

180 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.5: X-OPRS File Menu

user to select the include file to load. This command is equivalent to the include
command of the OPRS Kernel (see [OPRS Kernel Loading Commands], §2.4,
page 32).

Load Database

This command is used to load a database file. The default (and recommended)
extension for these files is ‘.db’ (see [Database File Format], §5.1, page 77).
When this command is selected, a file selection dialog box appears to allow the
user to select the database file to load. This command is equivalent to the load

db command of the OPRS Kernel (see [OPRS Kernel Loading Commands], §2.4,
page 32). The kernel database can be emptied with the “Empty Fact Database”
command (see [OPRS Menu], §13.3.2, page 183).

X-OPRS Load OP File

This command is used to load a OP File, in OPF format (see [OPF Format],
§17.1, page 239). The default (and recommended) extension for these files is
‘.opf ’ . When this command is selected, a file selection dialog box appears
to enable the user to select the OP file to load. This command is equivalent
to the load opf command of the OPRS Kernel (see [OPRS Kernel Loading
Commands], §2.4, page 32). The kernel OP Library can be emptied with the
“Empty OP Database” command (see [OPRS Menu], §13.3.2, page 183).

Load Dump Database

This command is used to load dump database file. The default (and recom-
mended) extension for these files is ‘.ddb’. When this command is selected, a

13.3. MENUBAR 181

Figure 13.6: Reload OP File Dialog List

file selection dialog box appears to allow the user to select the database file to
load. This command is equivalent to the load dump db command of the OPRS
Kernel (see [OPRS Kernel Dumping/Loading Commands], §2.11, page 39).

Load Dump OP

This command is used to load a dump OP File. The default (and recommended)
extension for these files is ‘.dopf’ . When this command is selected, a file
selection dialog box appears to enable the user to select the OP file to load. This
command is equivalent to the load dump op command of the OPRS Kernel (see
[OPRS Kernel Dumping/Loading Commands], §2.11, page 39).

Load Dump Kernel

This command is used to load a dump kernel File. The default (and recom-
mended) extension for these files is ‘.dkrn’ . When this command is selected,
a file selection dialog box appears to enable the user to select the kernel file to
load. This command is equivalent to the load dump kernel command of the
OPRS Kernel (see [OPRS Kernel Dumping/Loading Commands], §2.11, page
39).

List Loaded OP Files

This command is used to list all the OP File loaded in the X-OPRS Kernel.
This command is equivalent to the list opfs command of the OPRS Kernel
(see [OPRS Kernel OP Library Commands], §2.3, page 31).

Reload OP File

This command is used to reload a OP File, in OPF format (see [OPF Format],
§17.1, page 239). The default (and recommended) extension for these files is

182 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.7: Unload OP File Dialog List

‘.opf ’ . When this command is selected, a selection dialog with the list of load
OP file appears to enable the user to select the OP file to reload (Figure 13.6).
This command is equivalent to the reload opf command of the OPRS Kernel
(see [OPRS Kernel Loading Commands], §2.4, page 32).

X-OPRS Unload OP File

This command is used to unload a OP File. When this command is selected, a
dialog box displaying all the OP Files currently loaded in the kernel appears to
enable the user to select the OP file to unload (see Figure 13.7). This command
is equivalent to the unload opf command of the OPRS Kernel (see [OPRS
Kernel OP Library Commands], §2.3, page 31). The kernel OP Library can be
emptied with the “Empty OP Library” command (see [OPRS Menu], §13.3.2,
page 183).

Save Database

This command is used to save the current state of the database in a file. The
default (and recommended) extension for this file is ‘.db’ . When this command
is selected, a file selection dialog box appears to allow the user to select the
database file to use. This command is equivalent to the save db command of
the OPRS Kernel (see [OPRS Kernel Database Commands], §2.2, page 30).

Dump Database

This command is used to dump the database in a file. The default (and rec-
ommended) extension for these files is ‘.ddb’. When this command is selected,
a file selection dialog box appears to allow the user to select the file in which
to dump the database. This command is equivalent to the dump db command
of the OPRS Kernel (see [OPRS Kernel Dumping/Loading Commands], §2.11,
page 39).

13.3. MENUBAR 183

Figure 13.8: Quit Dialog Box

Dump OP

This command is used to a dump the op library in a file. The default (and rec-
ommended) extension for these files is ‘.dopf’ . When this command is selected,
a file selection dialog box appears to enable the user to select the file in which
to dump the OP library. This command is equivalent to the dump op command
of the OPRS Kernel (see [OPRS Kernel Dumping/Loading Commands], §2.11,
page 39).

Dump Kernel

This command is used to a dump the kernel in a file. The default (and recom-
mended) extension for these files is ‘.dkrn’ . When this command is selected, a
file selection dialog box appears to enable the user to select the file in which to
dump the kernel. This command is equivalent to the dump kernel command
of the OPRS Kernel (see [OPRS Kernel Dumping/Loading Commands], §2.11,
page 39).

X-OPRS Quit

This command is used when you want to quit the X-OPRS Kernel. You are
asked to confirm that you want to quit (see Figure 13.8). This command is
equivalent to the q|quit|exit|EOF command of the OPRS Kernel (see [OPRS
Kernel Miscellaneous Commands], §2.13, page 42). Quitting the X-OPRS Ker-
nel will execute the end kernel user hook function (see [Advanced Features],
§10, page 135).

13.3.2 OPRS Menu

This menu (Figure 13.9) contains a number of commands to deal with the
running X-OPRS Kernel.

Add Fact or Goal

This command is used to add a fact or a goal to the running X-OPRS Kernel.
When this command is selected, a prompt dialog box appears to enable the
user to enter the fact or the goal to add (see Figure 13.10). This command is

184 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.9: X-OPRS Oprs Menu

Figure 13.10: Add Fact or Goal Prompt Dialog

13.3. MENUBAR 185

Figure 13.11: Conclude Database Dialog Box

equivalent to the add goal|fact command of the OPRS Kernel (see [OPRS
Kernel Miscellaneous Commands], §2.13, page 42). If you want to enter more
than one fact or goal in the same OPRS Kernel loop, you can halt the kernel
(with the “Halt” button), call this menu a number of time and then restart it.

Moreover, this command can be used to conclude a fact in the database.
However, it is not purely equivalent to the conclude expression of the OPRS
Kernel: the add fact leads to some OP executions if they are applicable, while
the conclude command only concludes the fact in the database.

Conclude Fact Database

This command is used to conclude a expression in the running X-OPRS Kernel.
When this command is selected, a Prompt dialog box appears to enable the
user to enter the expression to conclude (see Figure 13.11). This command is
equivalent to the conclude expression command of the OPRS Kernel (see
[OPRS Kernel Database Commands], §2.2, page 30).

Delete Fact Database

This command is used to delete a gexpression in the running X-OPRS Kernel.
When this command is selected, a Prompt dialog box appears to enable the user
to enter the gexpression to delete (see Figure 13.12). This command is equivalent
to the delete gexpression command of the OPRS Kernel (see [OPRS Kernel
Database Commands], §2.2, page 30).

Delete a OP

This command can be used to delete a particular OP from the kernel. When
selected, a dialog box (see Figure 13.13) appears on the screen with the list of

186 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.12: Delete Database Dialog Box

Figure 13.13: Delete OP Dialog Box

13.3. MENUBAR 187

Figure 13.14: X-OPRS Inspect Menu

the OP currently loaded. You can then select the one you want to delete. It is
not recommended to do this while the X-OPRS Kernel is running, particularly
if it is executing the OP you are deleting.

Empty Fact Database

This command is used to clear the entire fact database. It is equivalent to
the empty fact db command of the OPRS Kernel (see [OPRS Kernel Loading
Commands], §2.4, page 32).

Empty OP Library

This command is used to clear the OP Library. It is equivalent to the empty op

command of the OPRS Kernel (see [OPRS Kernel Loading Commands], §2.4,
page 32). This command should not be used while the kernel is executing some
OPs.

13.3.3 Inspect Menu

This menu (Figure 13.14) contains a number of commands to inspect the running
X-OPRS Kernel.

Show Database

This command is used to show the database content. It is equivalent to the show
db command of the OPRS Kernel (see [OPRS Kernel Database Commands],
§2.2, page 30). When this command is selected a Text Window Dialog Box is
poped up and contains the current database content (sorted alphanumericaly)

188 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.15: Show Database Dialog Box

(see Figure 13.15). This dialog box is not modal and has an Update button
which can be used to update the window to display the current content of the
database.

Show Global Variables

This command is used to show the global variables. It is equivalent to the
show variable command of the OPRS Kernel (see [OPRS Kernel Miscellaneous
Commands], §2.13, page 42).

Show Intentions

Display all the intentions, if any, with lot of information on the status of their
thread, etc. This command is equivalent to the show intention command of
the OPRS Kernel (see [OPRS Kernel Miscellaneous Commands], §2.13, page
42). When this command is selected a Text Window Dialog Box is poped up
and contains the current intention graph (see Figure 13.16). This dialog box is
not modal and has an Update button which can be used to update the window
to display the current intention graph..

Show Conditions

Display all the conditions, if any, with lot of information on the status of their
thread, etc. This command is equivalent to the show condition command of
the OPRS Kernel (see [OPRS Kernel Miscellaneous Commands], §2.13, page

13.3. MENUBAR 189

Figure 13.16: Show Intentions Dialog Box

Figure 13.17: Show Conditions Dialog Box

190 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.18: Consult Database Dialog Box

42). When this command is selected a Text Window Dialog Box is poped up
and contains the current condition. graph (see Figure 13.17). This dialog box is
not modal and has an Update button which can be used to update the window
to display the current intention graph..

Show Memory Usage

This command is used to show the memory usage. It is equivalent to the show

memory command of the OPRS Kernel (see [OPRS Kernel Miscellaneous Com-
mands], §2.13, page 42).

Consult Fact Database

This command is used to consult a gexpression in the running X-OPRS Kernel.
When this command is selected, a Prompt dialog box appears to enable the
user to enter the gexpression to consult (see Figure 13.18). The result appears
in the text window. This command is equivalent to the consult gexpression

command of the OPRS Kernel (see [OPRS Kernel Database Commands], §2.2,
page 30).

Consult Relevant OP

This command is used to find out which OPs are relevant for a fact or a goal.
When this command is selected, a prompt dialog box appears to enable the
user to enter the fact or the goal to consult. The result appears in the text
window. This command is equivalent to the consult relevant op fact|goal

command of the OPRS Kernel (see [OPRS Kernel Miscellaneous Commands],
§2.13, page 42).

13.3. MENUBAR 191

Figure 13.19: X-OPRS Inspect List Menu

Consult Applicable OP

This command is used to find out which OPs are applicable for a fact or a goal.
When this command is selected, a prompt dialog box appears to enable the user
to enter the fact or the goal to consult. The result appears in the text window.
This command is equivalent to the consult applicable op fact|goal com-
mand of the OPRS Kernel (see [OPRS Kernel Miscellaneous Commands], §2.13,
page 42).

List All

List all sort of information about this kernel (actions, evaluable functions, pred-
icates, etc.). It is equivalent to the list all command of the OPRS Kernel
(see [OPRS Kernel Listing Commands], §2.10, page 38).

List Submenu

This command brings a submenu with the following commands:

List Predicate This command will list the Predicate. It is equivalent to
the list predicate command of the OPRS Kernel (see [OPRS Kernel Listing
Commands], §2.10, page 38).

List Evaluable Predicate This command will list the Evaluable Predicate.
It is equivalent to the list evaluable predicate command of the OPRS Ker-
nel (see [OPRS Kernel Listing Commands], §2.10, page 38).

List Closed World Predicate This command will list the Closed World
Predicate. It is equivalent to the list cwp command of the OPRS Kernel (see
[OPRS Kernel Listing Commands], §2.10, page 38).

192 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

List Functional Fact Predicate This command will list the Functional Fact
Predicate. It is equivalent to the list ff command of the OPRS Kernel (see
[OPRS Kernel Listing Commands], §2.10, page 38).

List Basic Event Predicate This command will list the Basic Event Predi-
cate. It is equivalent to the list be command of the OPRS Kernel (see [OPRS
Kernel Listing Commands], §2.10, page 38).

List OP Predicate This command will list the OP Predicate. It is equivalent
to the list op predicate command of the OPRS Kernel (see [OPRS Kernel
Listing Commands], §2.10, page 38).

List Function This command will list the Function. It is equivalent to the
list function command of the OPRS Kernel (see [OPRS Kernel Listing Com-
mands], §2.10, page 38).

List Evaluable Function This command will list the Evaluable Function. It
is equivalent to the list evaluable function command of the OPRS Kernel
(see [OPRS Kernel Listing Commands], §2.10, page 38).

List Action This command will list the Actions. It is equivalent to the list

Action command of the OPRS Kernel (see [OPRS Kernel Listing Commands],
§2.10, page 38).

List Loaded OPs

This command is used to list all the OPs loaded in the X-OPRS Kernel. This
command is equivalent to the list ops command of the OPRS Kernel (see
[OPRS Kernel OP Library Commands], §2.3, page 31).

Stat Database Hashtables

This command is used to find out the state of the database hashtables. This
command is equivalent to the stat db command of the OPRS Kernel (see
[OPRS Kernel Miscellaneous Commands], §2.13, page 42).

Stat Symbol Hashtable

This command is used to find out the state of the Symbol hashtable. This
command is equivalent to the stat id command of the OPRS Kernel (see
[OPRS Kernel Miscellaneous Commands], §2.13, page 42).

13.3. MENUBAR 193

Figure 13.20: X-OPRS Trace Menu

Stat All Hashtables

This command is used to find out the state of all the hashtables of the kernel.
This command is equivalent to the stat all command of the OPRS Kernel
(see [OPRS Kernel Miscellaneous Commands], §2.13, page 42).

13.3.4 Trace Menu

The trace menu (Figure 13.20) contains all the commands which allow the user
to set various traces in the X-OPRS Kernel.

OPRS Trace

When this menu is selected, a menu options dialog box appears for the user
to set or unset various trace options (see Figure 13.21). Most of these trace
options have their pending flag in the OPRS Kernel (see [OPRS Kernel Trace
Commands], §2.5, page 33).

Goal Posting Turn on or off information on the goal posted in the kernel.
This command is equivalent to the trace goal on|off command of the
OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5, page 33).

Fact Posting Turn on or off information on facts posted in the kernel. This
command is equivalent to the trace fact on|off command of the OPRS
Kernel (see [OPRS Kernel Trace Commands], §2.5, page 33).

Conclude from Parser Turn on or off information on expression concluded in
the kernel. This command is equivalent to the trace conclude on|off

command of the OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5,
page 33).

Message Reception Turn on or off information on messages received by the
kernel. This command is equivalent to the trace receive on|off com-
mand of the OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5,
page 33).

Message Sent Turn on or off information on messages sent by the kernel. This
command is equivalent to the trace send on|off command of the OPRS
Kernel (see [OPRS Kernel Trace Commands], §2.5, page 33).

194 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.21: X-OPRS Trace Dialog Box

13.3. MENUBAR 195

Database Turn on or off trace on database operations. This command is equiv-
alent to the trace db on|off command of the OPRS Kernel (see [OPRS
Kernel Trace Commands], §2.5, page 33).

Database Frame Turn on or off the printing of the frames while printing the
result of a consultation. This command is equivalent to the trace db

frame on|off command of the OPRS Kernel (see [OPRS Kernel Trace
Commands], §2.5, page 33).

OP Success Failure Turn on or off information on the success or failure of
OPs. This command is equivalent to the trace suc fail on|off com-
mand of the OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5,
page 33).

Intention Failure Turn on or off information on the failure of Intentions. This
command is equivalent to the trace intention failure on|off com-
mand of the OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5,
page 33).

Intention Graphic Turn on or off graphic trace on the intention operation in
the kernel.

Intention Turn on or off information on the intention operation in the kernel.
This command is equivalent to the trace intend on|off command of
the OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5, page 33).

OP Compiler Turn on or off information on the compilation of OPs. This
command is equivalent to the trace load op on|off command of the
OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5, page 33). (very
verbose)

Relevant OP Turn on or off information on relevant OPs. This command
is equivalent to the trace relevant op on|off command of the OPRS
kernel (see [OPRS Kernel Trace Commands], §2.5, page 33). (quite ver-
bose)

Soak Turn on or off information on the set of applicable OPs. This command is
equivalent to the trace applicable op on|off command of the OPRS
Kernel (see [OPRS Kernel Trace Commands], §2.5, page 33).

OP Graphic Turn on or off graphic traces on executing OPs. This command is
equivalent to the trace graphic on|off command of the OPRS Kernel
(see [OPRS Kernel Trace Commands], §2.5, page 33).

OP Text Turn on or off text traces on executing OPs. This command is equiva-
lent to the trace text on|off command of the OPRS Kernel (see [OPRS
Kernel Trace Commands], §2.5, page 33).

196 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.22: OP Graphic List Dialog

Thread Forking/Joining Turn on or off information on thread creation and
merging. This command is equivalent to the trace thread on|off com-
mand of the OPRS Kernel (see [OPRS Kernel Trace Commands], §2.5,
page 33).

OP Trace/Step

This menu pops up list dialog boxes of all the OPs loaded in the X-OPRS kernel
(see Figure 13.22). You can then select or unselect the OPs for which you want
tracing (Text trace or Graphic trace) and stepping (with the Next command)
enabled. The radio buttons are used to select the status displayed, and the
status which will be applied to the selected OPs if you select OK or Apply. The
Both buttons select both graphic and text trace. The all button select the two
trace (graphic and text) and enable the OP steping.

As for the trace, the corresponding OP Graphic and/or Text Graphic op-
tion of the OPRS Trace option menu has to be on for the trace to be displayed.

You can also use the trace graphic op, trace graphic opf and trace

step opf command describe in [OPRS Kernel OP Library Commands], §2.3,
page 31.

13.3.5 Option Menu

The option menu (Figure 13.23) contains all the commands which allow the user
to set various options in the X-OPRS Kernel.

OPRS Run Option

When this menu is selected, a run menu options dialog box appears for the
user to set or unset various options (see Figure 13.24). Most of these options

13.3. MENUBAR 197

Figure 13.23: X-OPRS Option Menu

Figure 13.24: X-OPRS Run Option Dialog Box

have their pending flag in the OPRS Kernel (see [OPRS Kernel Run Option
Commands], §2.6, page 34).

Eval On Post Turn on or off the current-quote mechanism (see [Current and
Quote], §10.7, page 141). This command is equivalent to the set eval on post

on|off command of the OPRS Kernel (see [OPRS Kernel Run Option
Commands], §2.6, page 34).

Parallel Goal Posting Turn on or off the parallel posting of goals. When
this option is on, one goal for each thread active in the current intention
will be posted (see [New Traces and New Options], §8.2, page 129). This
command is equivalent to the set parallel post on|off command of
the OPRS Kernel (see [OPRS Kernel Run Option Commands], §2.6, page
34).

Parallel Intend Turn on or off the parallel intending of OP instance. When
this option is ON, all the OP Instances found in the PREVIOUS SOAK (see
[OPRS Kernel Main Loop], §7.4, page 113) are intended (see [New Traces
and New Options], §8.2, page 129). This command is equivalent to the
set parallel intend on|off command of the OPRS Kernel (see [OPRS
Kernel Run Option Commands], §2.6, page 34).

Parallel Intention Execution Turn on or off the parallel execution of all the
intention root of the intention graph. See [New Traces and New Op-
tions], §8.2, page 129. This command is equivalent to the set parallel

198 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.25: X-OPRS Compiler/Parser Option Dialog Box

intention on|off command of the OPRS Kernel (see [OPRS Kernel Run
Option Commands], §2.6, page 34).

Time Stamping Turn on or off the time stamping in the kernel of various date
(fact creation, goal creation, etc.). This command is equivalent to the set

time stamping on|off command of the OPRS Kernel (see [OPRS Kernel
Run Option Commands], §2.6, page 34).

OPRS Compiler/Parser Option

When this menu is selected, a menu options dialog box appears for the user to
set or unset various options (see Figure 13.25). Most of these options have their
pending flag in the OPRS Kernel (see [OPRS Kernel Compiler/Parser Option
Commands], §2.8, page 36).

Compiler Check Action Turn on or off action checking in the OP Compiler.
See [Action Checking], §4.4.1, page 75 for more information. This com-
mand is equivalent to the set action on|off command of the OPRS
Kernel (see [OPRS Kernel Compiler/Parser Option Commands], §2.8,
page 36).

Compiler Check Function Turn on or off function checking in the OP Com-
piler. See [Function Checking], §4.4.3, page 76 for more information. This
command is equivalent to the set function on|off command of the
OPRS Kernel (see [OPRS Kernel Compiler/Parser Option Commands],
§2.8, page 36).

Compiler Check Predicate Turn on or off predicate checking in the OP
Compiler. See [Predicate Checking], §4.4.2, page 75 for more informa-
tion. This command is equivalent to the set predicate on|off com-
mand of the OPRS Kernel (see [OPRS Kernel Compiler/Parser Option
Commands], §2.8, page 36).

13.3. MENUBAR 199

Figure 13.26: X-OPRS Meta Level Option Dialog Box

Compiler Check Symbol Turn on or off symbol checking in the OP Com-
piler. See [Symbol Checking], §4.4.4, page 76 for more information. This
command is equivalent to the set symbol on|off command of the OPRS
Kernel (see [OPRS Kernel Compiler/Parser Option Commands], §2.8,
page 36).

OPRS Meta Level Option

When this menu is selected, a menu options dialog box appears for the user
to set or unset various options (see Figure 13.26). Most of these options have
their pending flag in the OPRS Kernel (see [OPRS Kernel Meta Level Option
Commands], §2.7, page 35).

Meta Level Turn on or off the metalevel mechanism, which greatly increases
the performance of the system. This command is equivalent to the set

meta on|off command of the OPRS Kernel (see [OPRS Kernel Meta
Level Option Commands], §2.7, page 35).

Post Meta Fact: (SOAK ...) Turn on or off the posting of the (SOAK) meta
fact. This command is equivalent to the set soak on|off command of
the OPRS Kernel (see [OPRS Kernel Meta Level Option Commands],
§2.7, page 35).

Post Meta Fact: (FACT-INVOKED-OPS ...) Turn on or off the posting
of the (FACT-INVOKED-OPS) meta fact. This command is equivalent to
the set meta fact on|off command of the OPRS Kernel (see [OPRS
Kernel Meta Level Option Commands], §2.7, page 35).

Post Meta Fact: (GOAL-INVOKED-OPS ...) Turn on or off the posting
of the (GOAL-INVOKED-OPS) meta fact. This command is equivalent to
the set meta goal on|off command of the OPRS Kernel (see [OPRS
Kernel Meta Level Option Commands], §2.7, page 35).

200 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

Figure 13.27: X-OPRS Display Menu

Post Meta Fact: (APPLICABLE-OPS-FACT ...) Turn on or off the post-
ing of the (APPLICABLE-OPS-FACT) meta fact. This command is equiv-
alent to the set meta fact op on|off command of the OPRS Kernel
(see [OPRS Kernel Meta Level Option Commands], §2.7, page 35).

Post Meta Fact: (APPLICABLE-OPS-GOAL ...) Turn on or off the post-
ing of the (APPLICABLE-OPS-GOAL) meta fact. This command is equiv-
alent to the set meta goal op on|off command of the OPRS Kernel
(see [OPRS Kernel Meta Level Option Commands], §2.7, page 35).

13.3.6 Display Menu

This menu (Figure 13.27) contains the following items.

Display a Particular OP

This command can be used to display a particular OP on the screen.

Display Previous OP

This command can be used to display the previous OP on the screen.

Display Next OP

This command can be used to display the next OP on the screen.

Clear Text Pane

Clear the text pane.

Clear OP Pane

Clear the OP pane.

13.4. CONTROL AND STATUS PANEL 201

Figure 13.28: X-OPRS Help Menu

Figure 13.29: The Control and Status Panel

Clear Intention Graph Pane

Clear the intention graph pane.

Change Size Text Pane

This command can be used to change the size of the scrollable area of the Text
pane.

13.3.7 X-OPRS Help Menu

The help menu (Figure 13.28) contains a number of items. The first one, when
selected, pops up the documentation. The other items have the name of the
menu in the menu bar. They points to the respective documentation section.

13.4 Control and Status Panel

The Control and Status Panel (Figure 13.29) is divided in 2 parts, the Status
Panel and the Control Button Menu. The first one indicates the current status

202 CHAPTER 13. HOW TO USE THE X-OPRS KERNEL

of the kernel, and the second one allows the user to control its execution.

13.4.1 Status Panel

At all time, the status panel tells the user what is the status of the X-OPRS
Kernel. The status is updated from time to time by the X-OPRS kernel (every
tenth of a second or so). These buttons and the state they represent are not
exclusive, therefore more than one of these buttons can be ON at the same time.

Idle When this button is ON, it means that there was no new goal nor new
fact in the current loop of the kernel. This button sometimes blink off
while the kernel is running because indeed, you can have sometime, a loop
without new goal or new fact.

Stopped When this button is ON, it means that the X-OPRS Kernel has been
stopped by the user (using the step, next or halt command).

Active This button is ON when there is “something to do”.

13.4.2 Control Button Menu

To some extend, the user can control the execution of the X-OPRS Kernel by
using the button of the Control Panel. To activate a command is just a matter
of clicking on the appropriate button. These commands are equivalent to the
command presented in See [OPRS Kernel Status and Control Commands], §2.12,
page 41.

Halt Click on this button to stop the execution of the X-OPRS kernel. While
the kernel is halted, you can perform most command, such as consulting
the fact or OP Library, adding new fact or new goal (in which case they
will be taken into account whenever the kernel is restarted), displaying a
particular OP, load new OPs, etc.

Run Click on this button to restart a stopped X-OPRS Kernel.

Step Click on this button to step through one loop of the X-OPRS kernel. Note
that one loop execution does not always produce any noticeable or visible
effect. . . .

Next Click on this button to run the kernel until the control hits an edge of a
step trace OP. This is very useful when you graphic trace OPs. At each
click, the execution goes from one traced edge to the next traced edge
(whatever execution happens in between).

Reset Click on this button to reset the kernel. This command is equivalent
to the reset kernel command of the OPRS Kernel (see [OPRS Kernel
Status and Control Commands], §2.12, page 41).

Part VII

OP Compiler

203

Overview of the OP
Compiler

The OP Compiler is the program which compiles OP files (textual or graphical)
in OPRS internal code. There are a number of good reasons to use such program:

• it is nuch faster to reload compiled OPs than non compiled one (as the
kernel must compile them at loading time).

• the compiled code is portable, and can thus be reloaded on any compatible
OPRS Kernel.

• one needs to use compiled OPs if one has a OPRS Application Environ-
ment. Indeed, OPRS Application Environment are runtime environment
only and can only load OPs produced and compiled in a OPRS Develop-
ment Environment.

The OP Compiler is in fact a part of the OPRS Kernel, and most of the
code thus shared with the OPRS Kernel.

205

206

Chapter 14

How to Use the OP
Compiler

The OP Compiler is only part of the OPRS Development Environment. More-
over, if one produce OPRS code for a OPRS Application Environment, one need
to compile the OP before passing them to theOPRS Application Environment.

14.1 Argument of the OP Compiler

Usage:

opc [-v] [-t] [-X] [-e]* [-o output-dopf]*

[-i command-file]* [-l input-opf]*

[-d imputdopf]* [-p oprs-data-path]* op-file*

Most arguments are optional and can be used more than once. The order
of the argument is very important as they get executed in the ordre they are
given.

-v will produce verbose output.

-t will compile ops in text mode.

-X will compile ops in graphic mode, the default.

-e will empty the internal op database.

-o output-dopf will the compiled op present in the op db in the specified file.

-i command-file will include an include .inc or symbol .sym file.

-l input-opf will load a .opf file in the op db

-d imputdopf will load a .dopf file in the op db.

207

208 CHAPTER 14. HOW TO USE THE OP COMPILER

-p oprs-data-path will set the oprs-data-path (overiding any previous value).

op-file will empty the op db, load op-file and dump the compiled version.

14.2 OP Compiler Environment Variables

There is one environment variable which can be used to customize the OP Com-
piler. However, the argument passed using the command line has precedence
on the one acquired from the environment variables.

OPRS DATA PATH is used to specify a data path, i.e. a colon separated list of
directories where the kernel will look for data files (‘.inc’, ‘.opf ’ and ‘.db’).
It is used by the OPRS Kernel and the X-OPRS Kernel. It is equivalent
to the -p command line argument. Note that the use of -p will overide
any value previously set (with OPRS DATA PATH or wih a previous -p).
Example:

setenv OPRS_DATA_PATH ./data:/usr/local/share/oprs/data:${HOME}/data

or

export OPRS_DATA_PATH=./data:/usr/local/share/oprs/data:${HOME}/data

14.3 Using the OP Compiler

14.4 Errors Reported by the OP Compiler

A certain number of errors can be reported by the OP Compiler.

Part VIII

OP Editor

209

Overview of the OP Editor

The OP Editor is the graphical editing tool of the OPRS development environ-
ment. It is not included in the OPRS application environment, because this
product does not provide any tool to create OPs and procedures. This tool uses
X11/Motif as a graphical user interface.

The OP Editor is the graphical editor for procedures/OPs. It enables the
user to create, edit and modify the procedures of a OPRS application.

• It runs under the X11 window system with the Motif widgets toolkit.

• Its embedded lexical and syntax checker ensure that the procedure the
user write will be loaded in the OPRS Kernel or X-OPRS Kernel.

• It is upward compatible with the GRASPER II Graph format , and Sun
Graph format.

• It allows the user to edit more than one procedure and more than one
procedure file at the same time.

• It provides an on-line help and documentation using the your prefered
HTML browser (Netscape).

• It has a friendly user interface.

The editor manipulates OPs and procedures which are stored in files. A file
is called a OP File and has different formats (see [OP File Format], §17, page
239).

Each OP file can contain a certain number of OPs and procedures. When
you edit a OP file, you can select the specific procedure you want to edit.

When selected, OPs and procedures are visible on the screen and can be
modified as desired by the user.

The OP files produced by the OP Editor can then be loaded in a OPRS
Kernel or an X-OPRS Kernel to be executed.

211

212

Chapter 15

How to Use the OP Editor

The OP Editor is invoked from the Unix shell with the command:
% op-editor

15.1 Arguments of the OP Editor

Usage:

op-editor [-D file-directory] [-F ACS-op-file] [-l upper|lower|none]

[-m message-passer-hostname] [-j message-passer-port-number]

[-c op-file*] [-pwt] [-peo] [-L en|fr] [op-file]*

The op-editor command also accept all the standard Xt arguments (see
[Xt Command Line Arguments], §L.1, page 383).

All the arguments are optional.

-D to specify a directory from which you want the file to be looked for. If you
say -D data, it tries to load subsequent files specified in the command
line from the data sub directory.

-F to specify a file to load in OPF format. This is equivalent to the Load OP
file command (see [Load OP File], §16.1.1, page 219). The ‘.opf ’ extension
must be omitted as it will be added by the argument parser.

-m to specify the hostname on which the Message Passer runs or will be started.
If the OP Editor cannot connect to this hostname on the specified port
(even after trying to start the Message Passer), then the program exits
with an error message. This option only applies if your license agreement
require connection of the OP Editor to the Message Passer.

-j to specify the port on which the Message Passer is expecting a connection
(or will be started if necessary). This option only applies if your license
agreement require connection of the OP Editor to the Message Passer.

213

214 CHAPTER 15. HOW TO USE THE OP EDITOR

Figure 15.1: OP Editor Window

15.2. OP EDITOR ENVIRONMENT VARIABLES 215

-c to convert OP file in the newest OP File format. A backup copy of the file
is done with the ‘.bak’ suffix.

-pwt is used to print the OP Editor widget tree (see [OP Editor Motif Widgets
Hierarchy], §L.3.2, page 386) . This can be useful if you do not have
the documentation at hand and still want to now the name or type of a
particular widget.

-peo (which stands for Print English Operator) can be used to parse and print
the temporal operator in english instead of the single letter. It will parse
and print achieve instead of !, and wait instead of ^ and so on. The
parser understands both syntaxes, but the printer will output the english
form.

-l upper|lower|none can be used to print and parse all the symbol and id in
upper case, lower case or in no particular case.

-L en|fr can be used to select the language of the interface (French or English).
Note that by default your kernel is in english. Note also that for the
applications with an X interface (i.e. X-OPRS Kernel and the OP Editor
the choice of the ‘app-defaults’ file will select the language (see [Xt/Motif
Widgets Hierarchy and Resources], §L, page 381). In this case, selecting
a different value with the option will lead to a warning and to a mix of
language in the interface.

op-file to specify files to load in OPF format. This is equivalent to the Load
OP file command (see [Load OP File], §16.1.1, page 219). The complete
name must be given.

If you specify -G, -S or -F, the respective file extensions must be omitted.

15.2 OP Editor Environment Variables

There are a number of environment variables which can be used to customize
the OP Editor or to define default arguments. Arguments passed using the
command line have precedence on those acquired from environment variables.

OPRS DOC DIR is used to specify the location of the online OPRS Development
Environment documentation. It is used by the X-OPRS Kernel and the
OP Editor. Example:

export OPRS_DOC_DIR=/usr/local/share/doc/openprs/

OPRS ID CASE is used to specify if the program should upper case, lower case
or should not change the case of the parsed Id. This is equivalent to the
-l option. The possible values are lower, upper or none: Example:

setenv OPRS_ID_CASE none

216 CHAPTER 15. HOW TO USE THE OP EDITOR

Figure 15.2: Selection Pane

15.3 Creating a OP

Creating a OP is a fairly easy task. In the OP Editor, select the Create OP
menu item (see [Create OP], §16.1.3, page 223) in the OP pull down menu. This
pops up a large dialog box (shown on figure 16.6) which can be filled with some
of the information needed to create a OP. Do not worry if you mistype or forget
something. The OP Editor checks the syntax, and you can change or edit the
different fields afterwards. Note that you can select the type of OP to create: a
Graph OP or an Action OP (this is not something you can change afterwards,
so you must choose now). According to your choice, you will get a OP with a
start node or (exclusive or) an action field. Click OK to create the OP. If any
syntax error is found, the OP Editor tells you in which field it was located.

As soon as the create dialog box disappears, you see your OP on the screen,
or more precisely its squeleton, as it only contains the fields you have filled up
and the start node (or the action field). By selecting the various operations of
the working menu (see [Working Menu Items], §16.2, page 233) and by following
the instructions in the Footer help window (see [Footer and Dialog Box Help],
§15.7, page 217), you can then create nodes or edges, edit them, and so on.

15.4 Editing an Existing OP

Editing an existing OP is also a fairly easy operation. In the OP Editor, select
the Select OP menu item (see [Select OP], §16.1.3, page 223) in the OP pull
down menu. This pops up a selection list dialog box containing all the OPs
present in this OP file. You can then select the one you want to see in the
editing area.

15.5 Scroll Bars

Scroll bars can be used at any time to change the view port of the drawing area.
The drawing area is virtually “as big as needed”, so do not be afraid to draw
OPs as big as you want. When the OP Editor starts, it “creates” a window
big enough to contain the biggest OP you loaded. However, you can increase
the maximum size of the window by selecting the Change Drawing Size (see
[Change Drawing Size], §16.1.4, page 230) menu item in the Misc Menu.

15.6. SELECTION PANE 217

Figure 15.3: Footer Help Pane

15.6 Selection Pane

This pane (Figure 15.2) is located just below the menu bar and gives the fol-
lowing information to the user: the file name which is currently edited, the OP
name which is currently selected, and a marker indicating whether the file has
been modified or not.

15.7 Footer and Dialog Box Help

At any time, the user can get information and valuable help on what he is
expected to do by looking at the footer window of the OP Editor (Figure 15.3).
Moreover, most dialog boxes have “HELP” button pointing at the proper section
of the on line manual (the present manual), which can be browsed with your
HTML browser.

15.8 Pretty Printing

All text objects displayed by the OP Editor (but also the X-OPRS Kernel) are
pretty printed. Pretty printing is usually appreciated when one has complex
expressions to edit, it makes the editing process easier and faster. Moreover,
the user can specify on which width the pretty printer should try to print the
object, as well as, if it should (when possible) fill up the lines (see [Edit Object],
§16.2.11, page 236). This information (the width and the line filling) is kept in
the OPF format for each fields of each OP.

218 CHAPTER 15. HOW TO USE THE OP EDITOR

Chapter 16

OP Editor Commands

The commands of the OP-editor are grouped into two different sets of menu.
The first set is a menu bar with cascade menus. The second set is a group of
push buttons on the left side of the drawing pane. It is called the working menu,
as it contains the commands which are most often used to edit OPs.

16.1 Menubar of the OP Editor

The Menu Bar (Figure 16.1) contains different buttons from which cascade
menus pop when selected.

16.1.1 File Menu of the OP Editor

The file menu (Figure 16.2) contains all the operations dealing with files, i.e.
operations to load OP files in different formats, to save or write them, etc.

Load OP File

This command is used to load a OP File, in OPF format (see [OPF Format],
§17.1, page 239). The default (and recommended) extension for this file is ‘.opf ’
. When this command is selected, a file selection dialog box appears to enable
the user to select the file to load (see Figure 16.3) .

If the load command is successful, the Select OP dialog box pops up, and
the user is asked to select a OP to display.

Figure 16.1: OP Editor Menu Bar

219

220 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.2: OP Editor File Menu

Figure 16.3: Load OP File Selection Box

16.1. MENUBAR OF THE OP EDITOR 221

Append OP File

This command is used to append a OP File, in OPF format (see [OPF Format],
§17.1, page 239), to the currently selected OP file. When this command is
selected, a file selection dialog box appears to enable the user to select the file
to append.

If the append command is successful, the Select OP dialog box pops up, and
the user is asked to select a OP to display.

New OP File

This command can be used to create a new OP file. By default, the name of
this new file is ‘Untitled’ with an increasing suffix number. The name of the file
is chosen and defined the first time you save it with the save or write command.

Load Grasper OP File

This command is provided for upward compatibility with SRI Lisp OPRS.
This command is used to load a OP File in Grasper Graph format (see

[GGRAPH Format], §17.2, page 239). The default (and recommended) exten-
sion for these files is ‘.ggraph’ . When this command is selected, a File Selection
dialog box appears to allow the user to select the file to load.

Load Sun OP File

This command is provided for upward compatibility with SRI Lisp OPRS.
This command is used to load a OP File in Sun Graph format (see [SGRAPH

Format], §17.3, page 241). The default (and recommended) extension for this
file is ‘.sgraph’. When this command is selected, a File Selection dialog box
appears to allow the user to select the file to load. Note that nothing appears
on the screen as the result of this command. You first need to save the file (in
OPF format), and then reload the saved file.

Save OP File

The OP Editor can only save in OPF File format (see [OPF Format], §17.1,
page 239). By default, the save command saves the currently selected OP File.
If this OP file has no real filename (if it has been created with the New OP
File command), then a Selection File dialog box pops up for you to choose the
filename. The default and recommended extension is ‘.opf ’.

If the currently selected OP file is not in the OPF File Format, an error
dialog box pops up to advise you to use the write command instead.

Write OP File

The write command can be used to write the currently selected OP File in OPF
format in the filename specified in the Selection File dialog box.

222 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.4: OP Editor Edit Menu

Write TeX Doc File

The write tex doc file command can be used to write a TEX/LATEX format
documentation of the selected file in the filename specified in the Selection File
dialog box. This documentation can the be included in TEX/LATEX document.

Quit

This command is used when you want to quit the OP Editor. If some files have
not been saved, you are asked to confirm you want to quit without saving them.

16.1.2 Edit Menu of the OP Editor

This menu (Figure 16.4) contains the commands to deal with loaded OP Files.

Select OP File

This command allows you to change the currently selected file. A list of currently
loaded or known OP Files is presented in a Selection Dialog Box. If the selection
is successful, a Select OP dialog box pops up for you to choose the OP to display.

Print OP File

This command applies the “print” command (see [OP Editor Resources], §L.3.1,
page 385, and see [Change Print Command], §16.1.4, page 230) to all the OPs
of the current OP file. Beware, this can be a rather long process.

Unload OP File

This command allows the user to unload a OP file. As a result, the file will not
appear in the Select OP file menu any longer.

16.1.3 OP Menu

This menu (Figure 16.5) contains all the commands which deal with OPs and,
most often, with the Selected OP.

16.1. MENUBAR OF THE OP EDITOR 223

Figure 16.5: OP Editor Op Menu

Select OP

This command allows the user to change the Selected OP. Keep in mind that
the name of the Selected OP is visible at any time in the information pane just
below the Menu Bar.

Create OP

This command allows the user to create a new OP. A big dialog box pops up
on the screen (see figure 16.6), and you are asked to fill up the various fields of
the OP you want to create. Note that only two fields are really required: the
name and the invocation part. The resulting OP is shown on Figure 16.7.

If you click on the Action toggle button, the Dialog Box will change as shown
on Figure 16.8). An Action field is added, and you can enter the action part of
the OP. The resulting OP is shown on Figure 16.9.

If you click on the Text toggle button, the Dialog Box will change as shown
on Figure 16.10). A Body field is added, and you can enter the body part of
the OP. The resulting OP is shown on Figure 16.11.

Duplicate OP

This command allows the user to duplicate the currently Selected OP. A prompt
dialog box pops up for you to give the name of the duplicate OP.

224 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.6: Create OP Dialog Box (Graph OP)

16.1. MENUBAR OF THE OP EDITOR 225

Figure 16.7: Resulting Graph OP

Rename OP

This command allows the user to rename the currently Selected OP. A prompt
dialog box pops up for you to give the new name of the selected OP. The text
field is initialized with the previous name.

Print OP

Will print the current OP using the print command (see [Change Print Com-
mand], §16.1.4, page 230). This is done by dumping a bitmap of the OP in
a temporary file, and then by processing the resulting file with the print com-
mand. The temporary file is then deleted. This OP is dumped in xwd format.
It used to be in xpm format, but the xwd format is much smaller on disk and
much faster to produce.

Dump OP Pixmap to File

This command allows the user to dump a bitmap or pixmap of the current OP.
A file selection dialog box pops up to allow the user to choose in which file the
pixmap should be dumped. Note that the resulting file is ‘HUGE’...

226 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.8: Create OP Dialog Box (Action OP)

16.1. MENUBAR OF THE OP EDITOR 227

Figure 16.9: Resulting Action OP

Destroy Current OP

This command allows the user to destroy the current OP.

‘Caution:’ The current version of the OP Editor does not have an Undo
facility. . . So extreme care should be exercised when using this command.

Destroy A OP

This command allows the user to destroy a OP selected with a OP Selection
dialog box.

‘Caution:’ The current version of the OP Editor does not have an Undo
facility. . . So extreme care should be exercised when using this command.

Previous OP

This command allows the user to quickly select the previous OP in the same
OPFile.

Next OP

This command allows the user to quickly select the next OP in the same OPFile.

228 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.10: Create OP Dialog Box (Text OP)

16.1. MENUBAR OF THE OP EDITOR 229

Figure 16.11: Resulting Text OP

Toggle selected OPs

This command allows the user to quickly select the previously selected OP, even
if this OP is in another OPFile.

Last Selected OPs

This command allows the user to quickly select a OP in the list of the previously
selected OPs, even if this OP is in another OP File.

Copy OP in Buffer

This command allows you to copy a OP in an internal Copy/Paste buffer. This
OP can then be retrieved or pasted in another OP File, using the Paste OP
from Buffer command.

Paste OP from Buffer

This command enables the user to retrieve one or more OPs from the Copy/Paste
internal buffer and paste it in the current OP file.

230 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.12: OP Editor Misc Menu

Clear OP Buffer

Clear all the OPs in the Copy/Paste buffer.

16.1.4 Misc Menu

This menu (Figure 16.12) contains commands to customize the OP Editor or
the appearance of the OP on the screen.

Change Print Command

Allow the user to change the print command. The default value is: xwdtopnm

< %s | pnmtops -r | lpr. The default value is the one defined in the ‘Op-
editor.ad’ resources file (see [OP Editor Resources], §L.3.1, page 385). It can
be modified by the user (by setting his own resource).

In any case, you must specify a command which contains a %s to specify
the argument to which it will apply (the temporary file where the OP has been
dumped). Moreover, this command must be able to send a xwd (it used to be
in xpm format) to the printer. We strongly advise the user to get the pbmplus
pacopge by Jef Posopnzer to print the result [Pos89].

The default command converts from xwd to pnm, then transforms it in
encapsulated postscript with run length encoding and finally pipes it in the
printer...

Note that you can use this command to dump OPs in Encapsulated Postscript
format (to include them in user manuals for example) by redirecting the last
command in a file instead of piping it in lpr.

Change Drawing Size

This command pops up a small window (see Figure 16.13) containing the current
size of the drawing area in pixel. You can then change it. It is not recommended
to reduce it as you could render some parts of a OP invisible or undisplayable
(the invisible information is still present though, you just cannot access it).

Symbols List

This command pops up a small window (see Figure 16.14) containing the current
list of symbols declared in this OP file. You can then change the content of this

16.1. MENUBAR OF THE OP EDITOR 231

Figure 16.13: Change Drawing Size Dialog Box

Figure 16.14: Symbol List Dialog Box

232 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.15: Selected Fields Dialog Box

list which is saved within the OP file.

Change Visible Fields

When selected, this menu item pops up a dialog box (see Figure 16.15) which
enables you to tune the way a OP is displayed on the screen, dealing with the
visibility of unused or unnecessary fields. The dialog box offers you a list of push
buttons corresponding to the different text fields of a OP (documentation part,
context, and so on). These push buttons are on when the corresponding field
is visible. They are off when it is invisible, and they are insensitive when the
corresponding field is not empty (in which case they cannot be made invisible).
You also have a all button and a none button which allow you to make all the
fields (to which the operation applies) visible or invisible.

Note that you cannot hide a non empty field, and you cannot hide the
Invocation Part (which is always required). Similarly, to edit a field, you need
to make it visible first.

Note that you can hide the name of the OP if you want.

16.1.5 Mode Menu

This Mode menu (Figure 16.16) contains commands equivalent to the one in
the working menu (see [Working Menu Items], §16.2, page 233). Its purpose is
mainly to enable the use of accelerators on the working menu (as Motif only
allowes the use of accelerator on button in menu).

16.2. WORKING MENU ITEMS 233

Figure 16.16: OP Editor Mode Menu

Figure 16.17: OP Editor Help Menu

16.1.6 OP Editor Help Menu

The help menu (Figure 16.17) contains a number of items which, when selected,
pop your HTML browser with the proper documentation. The first item is Help
and shows the top level directory of the documentation. The other item pops
up the browser but at the selected documentation section.

16.2 Working Menu Items

The Working Menu (Figure 16.18) contains the commands which are most often
used to edit a OP. Most of them deal with the components of a OP. They
remain selected until you select another mode. For example, if you have selected
Destroy Object, you stay in this mode until you select another mode (this can
be rather dangerous). By default, the OP Editor starts in the Move Objects

234 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.18: OP Editor Working Menu

mode. Independently of any working selected menu, middle click is always
equivalent to Move Objects and right click (whenever it is available) to Edit
Object.

16.2.1 Move Objects

This command is used to move objects on the screen. The movable objects
are: nodes, knots, text fields, edge texts. Just click on them and a bounding
rectangle appears. You can then drag the object to its new position.

Note that if you click on the background window (i.e. not on an object), the
whole window moves. This can be faster than using the scrolling bar.

16.2.2 Create Node

Create a new node wherever you click.

16.2.3 Open Node

A new node will be created just under the node on which you click. The outgoing
edge from the first node will be transferred on the second one. In other word,
you just opened the node to insert an edge on it.

16.2. WORKING MENU ITEMS 235

Figure 16.19: Create Edge Dialog Box

16.2.4 Create If Node

This command can be used to create IF-THEN-ELSE nodes.

16.2.5 Flip Conj/Disj Out

When selected, this command allow the user to flip the status (disjunctive/conjunctive)
of the outgoing edges of a node. Conjunctive corresponds to creation of new
threads.

16.2.6 Flip Conj/Disj In

When selected, this command allow the user to flip the status (disjunctive/conjunctive)
of the ingoing edges of a node. Conjunctive correspond to merge of multiple
threads.

16.2.7 Create Edge

Create an edge between the first selected node and the second one. You can
create intermediate knots by clicking on their desired position. If, after selecting
the first node, you change your mind and want to unselect it, just click on the
right mouse button. This will unselect the first selected node.

If you have selected a second node, a prompt dialog box pops up (see Figure
16.19) and asks you to enter the goal to put on the edge.

16.2.8 Create Knot

You first need to select an edge to which you want to add a knot by clicking on
the text part of the edge. Then, you can add as many knots as you want. Click
right to unselect the edge.

236 CHAPTER 16. OP EDITOR COMMANDS

Figure 16.20: Edit Object Dialog Box

16.2.9 Duplicate Objects

Duplicate a node or an edge. For the node, it will duplicate all its ingoing and
outgoing edges.

16.2.10 Merge Node

Merge two nodes and all their edges.

16.2.11 Edit Object

When this command is selected, the user can edit any editable object (i.e.
text fields, edge texts and node names). A modal dialog box appear (Figure
16.20) and the user can change the object edited. This dialog box has two
particularities, there is a text field where the user can enter a pretty print
width, and a toggle button to specify if the pretty printer should fill up lines
or not (see [Pretty Printing], §15.8, page 217). The OP Editor is quite rigorous
for the syntax allowed in the text field. If anything wrong is entered, you get
an Error Dialog Box.

16.2.12 Convert End

This enables the user to convert (or unconvert) node to end node. The system
checks that the node you are converting is a leaf of the graph or that the node
is not the Start node.

16.2. WORKING MENU ITEMS 237

16.2.13 Convert Start

This enables the user to convert a node to a start node. Considering that only
one start node is allowed, converting a node to start node unconverts the current
start node which will therefore automatically become a standard node. The OP
Editor checks that the nodes you are converting do not have ingoing edges or
are not the start node.

16.2.14 Align Object

This command enables the user to align nodes and text fields. You first select
an object (the anchor) on which you want to align other objects. Then you
click on the objects to align. It will align the other objects on the closest of the
vertical or horizontal line going through the anchor. If you want to unselect the
anchor, you need to press the right mouse button.

16.2.15 Align Object Vert

This command enables the user to align nodes and text fields. You first select an
object (the anchor) on which you want to align vertically other objects. Then
you click on the objects to align. If you want to unselect the anchor, you need
to press the right mouse button.

16.2.16 Align Object Hor

This command enables the user to align nodes and text fields. You first select
an object (the anchor) on which you want to align horizontally other objects.
Then you click on the objects to align. If you want to unselect the anchor, you
need to press the right mouse button.

16.2.17 Destroy Object

This command is used when the user wants to destroy some objects on the
screen. Note that the destroy operation is done on the mouse up event. . . On
the mouse down event, the OP Editor shows you (by selecting it) the object
which is going to be destroyed. However, if (while the button is still pressed) you
move the mouse away from the bounding box of the object, it is not destroyed.
A recent version of the OP Editor allows the user to destroy the knots of an
edge.

‘Caution:’ The current version of the OP Editor does not have an Undo
facility. . . So extreme care should be exercised when using this command.

16.2.18 Relevant OP

This command can be used to find out what are the OP relevant to a particular
goal. When this mode is selected, click on an edge (actually, the text of the

238 CHAPTER 16. OP EDITOR COMMANDS

goal), and the OP Editor will propose a list of relevant OP (among the OP
currently loaded in the OP Editor).

Chapter 17

OP File Format

Version of the OP Editor prior to 1.3 recognizes three different OP file formats.
The OPF File format is the official format used by the various components of
the OPRS Development Environment. However, the two other formats are used
for compatibility with SRI Lisp OPRS version.

Versions of the OP Editor greater or equal to 1.3 only recognize the OPF
format. If you still have old files, use a version of the OP Editor prior to 1.3 to
convert them.

17.1 OPF Format

The OPF format is the default file format used by ACS OP Editor. It has
been designed for OPRS Development Environment. It is the one and only
one format recognized by the OPRS Kernel. Moreover, the OP Editor knows
how to write OP files only in this format (but can read other formats). There
exist different version of this format, but this is an internal flag which allow the
modules of the OPRS Development Environment to distinguish between them.

17.2 GGRAPH Format

The GGRAPH (Grasper Graph format) is provided for compatibility. The OP
Editor is able to read this format and understand the various graphical infor-
mation it contains. However, several details (usually unnecessary to the OPRS
Kernel) are not properly parsed in this format (such as the fonts used on a
particular edge).

For various reasons, one cannot guarantee that the OP Editor will properly
parse all the Grasper Graph files. If you have any problem with a particular
file, check the list of known problems with this format and report your problem
to oprs-bug@ingenia.fr.

239

240 CHAPTER 17. OP FILE FORMAT

17.2.1 How to Get Grasper Graph on your Lisp Machine

In Grasper, load your OP graph, and select it. Make sure you are in the proper
pacopge (most likely OPRS), and execute the following code in the Grasper
Listener pane:

(let ((*print-length* nil)

(*print-level* nil))

(with-open-file (foo-graph "foo.ggraph" :direction :output)

(format foo-graph "~s" (grasper:describe-graph)))

This saves your graph in the file ‘foo.ggraph’.
‘Warning:’ These text-graphs are different from those you get when you

execute the command Output-SUN under Grasper (which delivers a SGRAPH
format). . . The former contains positions and graphical information, the latter
does not.

It has been reported that a nickname given to the pacopge GRASPER causes
Grasper to save the file with the nickname instead of the original GRASPER

symbol. The OP Editor expects the GRASPER symbol. . . So at worst, you need
to remove this nickname before saving, or replace the nickname with GRASPER

under a text editor.

17.2.2 Grasper Graph Incompatibilities

While loading a Grasper Graph, few things are not properly recognized by the
OP Editor:

Unrecognized Symbol

Replace |#:| with |# in node names like: |#:|e7756| These node names come
from the time of ZetaLisp.

In the following forms, the & and ! are not parsable.
(*FACT (EQUAL & (CAADR (GOAL-STRUCT-STATEMENT (OP-INSTANCE-GOAL

(FIRST $X))))))

(*FACT (EQUAL ! (CAR (GOAL-STRUCT-STATEMENT (OP-INSTANCE-GOAL (FIRST

$X))))))))

The reason is quite obvious: these symbols should not be used explicitly in
OPs and these tests should be replaced with evaluable predicate doing the same
thing.

Negation as Failure

—Meta ! (negation as failure)— (which is a OP in default-processes.graph)
cannot be parsed because of the absence of negation as failure in OPRS. As
a consequence, the expression (! (~ $X)) cannot be parsed as a Temporal
Expression (according to OPRS Grammar).

17.3. SGRAPH FORMAT 241

Badly Formed Goals

The following goal is not allowed: (! (SEND-COMMAND-ACTION (DISPLAY-FOO

(((CURRENT $O) (CURRENT $B)))))) because (((CURRENT $O) (CURRENT $B)))

is not a valid Composed Term.
This goal: (! (& (~> (FOOBAR $P $A)) (=> (FOOBAR $P $A)))))))

is not allowed anymore. . . , replace it with: (& (~> (FOOBAR $P $A)) (=>

(FOOBAR $P $A))))))

17.3 SGRAPH Format

The SGRAPH or SUN Graph format is provided for compatibility with a OP
Format which has been used on SRI Sun version of the Lisp version of OPRS.

Note that this format does not have any graphical information. Conse-
quently, it should be used in the last resort.

If you load a SGRAPH format file, nothing shows on the screen (this format
does not include any graphical information. . .). You have to save it first (in
OPF format) and read it again. The various OP fields are positioned at their
default position. . . But all nodes and edges are grouped in one position (20 20).
You can then rearrange them as you wish. A future version of the OP Editor
may attempt to display these graphs with a better organization, however, the
current one does not (Note that if you had the possibility to generate OP File
in SGRAPH format, you could also generate it in GGRAPH format, which is
preferred).

242 CHAPTER 17. OP FILE FORMAT

Part IX

Using OPRS

243

Chapter 18

Introduction to Using
OPRS

Now that you have read through the whole documentation (you still have the
Appendices. . .), you may start to wonder how the different parts fit in. You
have got this real-time, control and supervision application to solve, and you
get the strange but growing feeling that OPRS is the tool you need. Good. This
part of the manual go through the various process you have to do to set up your
own application.

We are first going to go through a simple OP Editor and X-OPRS Kernel
session. We will then examine the various questions you have to ask yourself
before getting started. How many kernels do I need? what do I put in the
database? how many OPs? do I need meta level reasoning? how can I optimize
my application? etc...

Then we will examine various applications and justify the answer to the
aforementioned questions.

245

246 CHAPTER 18. INTRODUCTION TO USING OPRS

Chapter 19

Setting Up your
Environment

To be able to use the OPRS Development Environment you may need to set up
a number of environment variables.

export OPRS_INSTALL_DIR=/usr/local # change as necessary

unless ${OPRS_INSTALL_DIR}/bin is already in your path...

export PATH="${PATH}:${OPRS_INSTALL_DIR}/bin"

if [[! $XFILESEARCHPATH]]; then

export XFILESEARCHPATH="${XFILESEARCHPATH}:${OPRS_INSTALL_DIR}/lib/%T/%N"

else

export XFILESEARCHPATH="${OPRS_INSTALL_DIR}/lib/%T/%N"

fi

export OPRS_DOC_DIR=${OPRS_INSTALL_DIR}/share/doc/openprs

export OPRS_DATA_PATH=${OPRS_INSTALL_DIR}/share/openprs/data:./data:.

247

248 CHAPTER 19. SETTING UP YOUR ENVIRONMENT

Chapter 20

Getting Started

To understand this chapter, the reader is supposed to have some common knowl-
edge about the following subject: Unix, X11, X server, Motif, Xt.

Assuming OPRS Development Environment has been properly installed at
your site, and assuming you have the OPRS Development Environment in “your
path” (i.e. Unix will find the command if you invoke them), then you can now
start to use OPRS.

20.1 Getting Started with the OP Editor

To get started, you can probably just call the OP Editor. This tool described
in detailed (see [How to Use the OP Editor], §15, page 213), is used to dis-
play/edit/create procedures as they are represented in used in the OPRS De-
velopment Environment.

The OP Editor is a graphical tool and can only be used if and only if you
are running an X server. To call the OP Editor, just type (at the Unix prompt):

% op-editor

This should bring the OP Editor window. Then, you can either load an
already existing OP file, or you can start to create your own procedure.

To load an existing OP File, you must select the Load OP File menu item
from the File menu, [Load OP File], §16.1.1, page 219. This will bring a File
Selection Dialog Box from which you can select a file to load. Usually, data files
are available in the ‘/usr/local/oprs/data/’ directory. If your version of the OP
Editor is properly installed, the File Selection Dialog Box should point to this
directory.

After the OP file is loaded, you will be asked (with a List Selection Dialog
Box) to select which procedure to edit from this file (keep in mind that a OP
File can contain more than one procedure). If you select a procedure, then it
should appear on the screen. In case, you do not select any procedure, you can
still select a procedure later by using the Select OP menu item from the OP
Menu [Select OP], §16.1.3, page 223.

249

250 CHAPTER 20. GETTING STARTED

You can now browse through the different menus available in the menu bar,
[Menubar of the OP Editor], §16.1, page 219. You will see that there are many
commands available to select/load/save/unload OP File, as well as command
to deal with procedures and OPs.

If you decide to create your own procedure, you must select the Create
OP menu item from the OP menu (see [Create OP], §16.1.3, page 223 and see
[Creating a OP], §15.3, page 216).

When you have a OP selected on the screen, you need to choose from the
Working Menu (the menu on the left of the drawing area) which operation you
want to perform. Here also, there are a number of operations available. Each
operation is more or less self explanatory, when selected, it stay selected until
you select another operation. Note that at any time you can consult the Help
Footer (see [Footer and Dialog Box Help], §15.7, page 217) for information on
how to proceed.

20.2 Getting Started with the X-OPRS Kernel

Before starting a X-OPRS Kernel, you must start a OPRS-Server (this operation
will also start a Message Passer). If you attempt to run a X-OPRS Kernel or
a OPRS Kernel without any OPRS-Server running, the program will exit with
an error message stating that it cannot connect to the Message Passer (which
is mandatory for X-OPRS Kernel and OPRS Kernel).

So, before doing anything, you need to call a OPRS-Server by issuing the
following command at the Unix prompt:

% oprs-server

From then, you can either start a X-OPRS Kernel from the OPRS-Server
by issuing the command at the OPRS-Server prompt:

OPRS-Server> make x foo

This will create a X-OPRS Kernel named FOO. Another way to obtain a
X-OPRS Kernel is to issue (at the Unix prompt) the command:

% xoprs foo

and then to issue (at the OPRS-Server prompt) the command:
OPRS-Server> accept

In both case, you should get the X-OPRS Kernel window on your screen.
At this stage, this X-OPRS Kernel is fully functional and can execute any

procedure you will load in it. To try a well known example, you can load
the file ‘/usr/local/oprs/data/fact-meta.inc’. This include file will load various
OP files (‘/usr/local/oprs/data/fact-meta.opf’ and ‘/usr/local/oprs/data/new-
default.opf ’). To load the include file, you have to select the Include File com-
mand from the File Menu (see [Include], §13.3.1, page 179).

You should see in the text pane various information about the procedures
which are loaded.

Now, your kernel is running, it has some procedures loaded, you need to
post a new goal or a new fact. For this particular example you just loaded, you
need to post the goal: (! (print-factorial 3)), or any particular integer

20.2. GETTING STARTED WITH THE X-OPRS KERNEL 251

value. If you try with an integer ¿ 30, you will most likely reach the maximum
integer value, and will get an erroneous result. You should then use float ((!
(print-factorial 150.0))). In any case, to post a new goal or a new fact,
you need to select the Add Fact or Goal menu item from the OPRS menu (see
[Add Fact or Goal], §13.3.2, page 183), type the goal, and click on OK. You will
see the result printed on the screen, in the text pane. During the run, you may
noticed some activity in the intention graphic trace pane. It is the evolution of
the different intentions which appear and then disappear.

You can make as many runs as you want and play with the different trace
and execution options available to the user. For example you can select the
OP Graphic Trace menu item in the Trace Menu (see [OP Trace/Step], §13.3.4,
page 196). This will pop up a List Selection dialog box where you can select the
OP for which you want a graphic trace of their execution. For this particular
application, it is a good idea to trace the OP: Print Factorial, Iterative

Factorial, Recursive Factorial and Meta Factorial.
Now that you are becoming more and more familiar with the interface, you

can start to play with the See [Control and Status Panel], §13.4, page 201. For
example, you can halt the kernel, then add a new goal, and then click on Step
of Next to see a step by step execution (see [Control and Status Panel], §13.4,
page 201, for an explanation of the differences between Next and Step.

252 CHAPTER 20. GETTING STARTED

Chapter 21

Setting Up an OPRS
Application

Setting up an OPRS application is an easy task. However, there are a number
of questions you have to ask yourself, or ask the final users or the experts who
will bring the knowledge in the system. These questions mainly relate to the
structure of the problem and to the way you want to solve it using OPRS. Keep
in mind that OPRS is a shell, a tool, and even if its features make it particularly
well suited for a certain type of application, you still need to do some work to
organize your application.

In this chapter we will examine all these questions you have to ask yourself
and put forward some suggestions to help you to answer them.

21.1 How Many OPRS Kernels Does it Takes to
Screw a Light Bulb?

The answer is 42.
In fact, this is indeed a question you have to ask yourself before starting

to implement your OPRS application. The answer is in your application itself,
you have to analyze it and figure out the answer. To help you we can identify
a number of criteria which participate in the decision.

How many agents are involved in your application? Indeed, the number
of agents are currently used to solve the problem is a good indication of the
number of kernels you may need to solve it with OPRS. For example, if your
problem involved two agents, each working on its own part of the problem,
exchanging information from time to time, then using two kernels seems a wise
choice. Another possible situation is when you have a large number of agents
doing “more or less” the same task, but either in a distributed way, or for their
own objectives.

253

254 CHAPTER 21. SETTING UP AN OPRS APPLICATION

Can all the computation be done by one kernel? This is an important
consideration. You must evaluate the amount of computation which will be
done for the application and consider its distribution if it appears to be too
large for a single kernel/platform. Keep in mind that the kernel will not only
execute the procedure you loaded but also the evaluable functions, predicates,
and actions you have linked in the kernel. Some of these operations can be
rather time consuming and so should be sliced or distributed.

Is the application composed of different independent modules or steps?
When the resolution of the problem is well defined in different modules, or can
be broken down in a number of well separated steps, then one can consider
implementing these different modules or steps in separate kernels.

Is the amount of information shared between modules small? This
is an important consideration to take into account. You have to make sure
that the amount of information between the different kernels is not too large.
Otherwise, you will lose in communication time, the time you have saved by
distributing your application.

21.2 OPRS Kernels or X-OPRS Kernels

This question is easy to answer. First from a functional point of view, the two
kernels are identical. However, due to some obvious overhead induced by X and
Xt the X-OPRS Kernel is slower than the OPRS Kernel. Keep in mind though
that the X-OPRS Kernel provides some interesting tracing and debugging capa-
bilities which are missing in the OPRS Kernel (the OPRS Kernel still provide
some trace, but they are not as visual as the one provided in the X-OPRS
Kernel).

It is usually a good practice to develop the various OPRS agents with the
X-OPRS Kernel, just to be able to trace and debug the OPs. Then, when a
set of procedure has been debugged and run flawlessly, one can load them in
a OPRS Kernel, you should not have any problem, except with the increased
performance.

Note however, that for some applications, the final user or the operator may
need to “see” the procedures executing. Therefore, it may be necessary to run
these procedures in an X-OPRS Kernel.

Similarly, there are some applications for which there are no need to follow
the graphic execution of the procedure, or to follow the graphic evolution of the
intentions graph. In this situation, one may run these procedure in a OPRS
Kernel.

Of course, one can mix X-OPRS Kernels and OPRS Kernels in the same
application.

An important criterion to evaluate, regarding the use of OPRS Kernel or
X-OPRS Kernel, is the respective size of these two kernels. The size of each

21.3. THE DATABASE: FACTS, ONLY THE FACTS 255

kernel depends of the availability of shared libraries on your system, the de-
bug flag with which the kernels were compiled and more generally the size of
binaries on your machine. Nevertheless you will noticed a great difference in
size between the X-OPRS Kernel and OPRS Kernel (the ratio can be of one
to ten...). Therefore, depending on the size of the swap space and the size of
memory on your machines, and the number of kernels involved, you may have
to limit the number of X-OPRS Kernel.

21.3 The Database: Facts, Only the Facts

The database has a very important and critical role in an OPRS application. It
is the memory of the “system”, and it is heavily used by the kernel to retrieve,
check, conclude information. There are many questions to be asked before you
start building your database. This section will go through these questions and
will bring some elements of answer.

21.3.1 The Representation of Facts

A very common question is what is exactly the proper way to represent facts or
beliefs in the database? Which format should be used? What is the proper way
to represent such and such information and what is the wrong way to do it?

The format used to represent facts in the database is simple:
(predicate-name <arguments>*).

The semantics associated with the predicate name and the arguments (and
the order of the arguments) is yours, and should be consistent through the whole
database and application.

For example, if you consider the predicate position, you probably want to
associate it to the idea of devices or objects being in particular position. Such
as in: (position valve open), or (position switch on), or even (position

robot unknown).
Note that for this particular predicate, we put first the argument to which

this information applies, and then the argument which represents the “value” of
this predicate for the first argument... However, this is not always the case. For
example, a predicate such as connected which would represent that two enti-
ties are somehow “connected” in your application may not bear any particular
meaning on the order of the argument. Therefore, (connected a b) would be
semantically equivalent to (connected b a). However, from a strict database
point of view, these two facts are different and it is the user’s task to make
these two equivalent when needed. To summarize, the order of arguments may
be meaningful or not, but in any case, it is up to the user to ensure that this
order is properly respected through the whole application when it is meaningful,
and to ensure that it is properly used when it is meaningless.

An important consideration, is to keep in mind that the predicate name is
always first, and cannot be replaced with a variable in any context. For example,
it is forbidden to write in a OP something like: (=> ($x a b))... Even if the

256 CHAPTER 21. SETTING UP AN OPRS APPLICATION

variable $x is bound to the symbol connected. This limitation comes from the
limitations of the First Order Predicate Calculus.

The last consideration to take into account relates to the goal representation
in OPRS. Do not forget that goals are built upon facts. According to the tempo-
ral operator used, they modify the semantics of the fact they are qualifying. As
a consequence, it is important that the facts underlying the goal representation
be consistent with the goal representation.

Consider the fact (position door open). We can easily build on this fact
to get the following goal: (! (position door open)) to open the door if it
is not already open, (? (position door open)) to test if it is currently open
, (^ (position door open)) to wait until somebody opens the door (if it is
not already open), etc... In all these examples, we can see that the fact and the
goals correspond in meaning. Moreover, when any of these goals are attempted,
the corresponding fact is checked in the database.

21.3.2 Which Predicate?

Now that the notion of predicate is clear, we must decide which predicates
should be used and for what.

First, the semantics of the predicates is the one the user wants to give to the
predicate. If you want to use the word position to represent things we have
nothing to do with position, you can... This will just make your OP unreadable...

Similarly, you can overload the semantics of a predicate. The predicate
position can be used in an application to represent the position of various
objects, and even different types of objects: switches, valves, lights, etc. An-
other alternative is to use multiple predicates such as switch-position or
valve-position. Here also, OPRS imposes no rules: the choice is the user’s,
to be decided based on considerations of the readability of the OPs and the
database.

To help organize a database, very often, one uses a type predicate to specify
the types of the various objects. This is very useful for example when one looks
for all the open valves in the plant:
(& (type valve $v) (position $v open)).

21.3.3 Which Predicates Should be Declared as Closed
World Predicates?

This is an easy question to answer... In general, most if not all predicates should
be declared as closed world predicates. Why? Because this is usually the way
we tend to think, i.e. if something is not known to be true, then its contrary
is usually true. To use the example given in section [Closed World Predicates],
§5.5, page 81, if we do not have any information about a direct flight between
Toulouse and San Francisco, most likely, no such flight exists, and therefore, its
negation is true. However, keep in mind that this information will be looked
at (the fact that this specific fact is not in the database, and the fact that it
is a CWP) if and only if you consult the negation of the fact. In other words,

21.3. THE DATABASE: FACTS, ONLY THE FACTS 257

there is no need to declare as CWP predicates for which you never retrieve the
negation.

Finally, there may exist some predicates which are not closed world predi-
cates, i.e. for which a request of the negation of something which is not known
as true is false...

21.3.4 Which Predicate Should be Declared as Functional
Facts?

See [Functional Facts], §5.6, page 84 explains in great details the logic behind
functional facts (FFs).

The important things to remember are:

• FFs are expensive.

• Only the predicates for which there exist a “functional” representation
can be considered as FFs.

• Declare predicates as functional facts, if and only if you want to insure an
automatic clean up of previous values.

• Remember to order the arguments in such a way that the predicate can
be declared as a FF.

• Sometime, Basic Events (see [Basic Events], §5.7, page 86) and (see [Basic
Events?], §21.3.5, page 257) are enough to represent facts you want to get
deleted automatically.

Here are examples of predicates which are often declared as FFs:
position, status, connected. For each of them one usually wants to remove
the previous value when a new value for a specific object is concluded.

21.3.5 Which Predicates Should be Declared as Basic Events?

This is another easy question to answer. You want to declare as Basic Events
(see [Basic Events], §5.7, page 86), all the predicates you want to trigger OP
applicability or intentions/threads awakening, but that you do not want to keep
in the database. Basic Events are used to represent events which are ephemeral,
which need to be considered by the kernel main loop, but do not need to be
remembered in the database for future use.

21.3.6 Forbidden Things and Things to Avoid with the
Database

There are a number of things one avoid while using the database mechanism.
Here is a non-exhaustive list of forbidden things:

• Do not conclude facts containing unbound variables.

258 CHAPTER 21. SETTING UP AN OPRS APPLICATION

• Do not consult evaluable predicates with unbound variables (unless your
predicate is able to handle the situation, which is unlikely...)

Here is a non exhaustive list of things to avoid as much as possible:

• Avoid consulting big disjunctions, which can lead to a huge number of
possible results. If you must use disjunction, try to put the most discrim-
inating facts in first.

• Avoid using long argument lists for facts.

• Remember to tune the size of the hashtable according to the number of
facts you are concluding in the database.

• Do not conclude evaluable predicates.

• Do not conclude facts containing variables bound to objects which are,
by their nature, pointing to internal objects, themselves pointing to other
internal objects. This will not break the system, but this will result in
ever growing kernel (as the Garbage Collector will be unable to collect the
internal data concluded in the database).

• Do not consult the negation of Closed World predicates with unbound
variables, as you will not get bindings even if the negation is true.

• Do not forget to clean up your database. Many applications grow indefi-
nitely because of a bad database clean up.

21.4 Which OP for Which Task?

21.4.1 Fact Invoked OPs

Fact invoked OPs are usually written to respond or react to events. They do
not have any explicit goal or objective.

These OPs usually correspond to events you have to monitor or you need to
check, such as alarms, change of values, etc.

21.4.2 Goal Invoked OPs

Goal invoked OPs are written to achieve a particular goal or objective. Their
success is equivalent to achieving the goal which invoked them.

These OPs usually implement a goal directed behavior, i.e. the execution of
these OP is supposed to achieve the goal for which they are applicable.

21.5. USER DEFINED EVALUABLE FUNCTIONS 259

21.4.3 Predefined OPs

A number of predefined OPs can be loaded in a specific application. The user
can pick up OPs in the different OP files provided with the distribution (see
[Default OPs], §F, page 309). For example, the OPs in the file ‘new-default.opf ’
(see [new-default.opf], §F.1, page 309) provide a number of interesting func-
tionalities. Most applications load this OP file. Even if it is not required, it is
strongly recommended, since OPs as basic as = are defined in this file.

Most of the default OPs defined in ‘new-default.opf ’ are action OPs. The
actions they call are usually documented and can be directly used by the user.

21.5 User Defined Evaluable Functions

Do you need to defined your own evaluable functions? This depends on your
application.

You may need evaluable functions for one the following reasons:

• to perform some specific computation on some Terms. For example, you
may have to define the max function which takes two integers and returns
the biggest of the two. Similarly, you may want to define a function which
concatenates two stings, etc... That’s up to you.

• to perform some specific computation on some user defined objects (U POINTER

Terms). For example, you may have defined your own user type, a fancy
C structure which holds various information required by your application,
and you want now to write a function which returns the string contained
in a specific field of this object.

In any case, the need for evaluable functions is easy to identify, and easy
to solve. Keep in mind though, that evaluable functions are called whenever
they are encountered while posting a goal containing a composed term whose
function name is an evaluable function. As a consequence, the time taken by
these functions should be as short as possible. Unlike Actions, the execution of
evaluable functions cannot be time sliced.

Finally, there are a number of things to consider when you write evaluable
functions:

• Check the number of arguments which are passed to your function.

• Check the type of each argument you are getting. (do not assume that the
user will always pass an argument of the right type at the right position).

• Check that all the arguments are bound. This relates to the previous
comment as you will get a Term of type VARIABLE if a variable is unbound...

See [How to Define your Own Evaluable Functions], §6.2, page 107, for more
information on this subject.

260 CHAPTER 21. SETTING UP AN OPRS APPLICATION

21.6 User Defined Evaluable Predicates

As with evaluable functions, evaluable predicates may be required in some ap-
plication:

• to perform some specific computation on some Terms. For example, you
may have to define the ordered predicate which taking a list of integers
return TRUE if the list is ordered, FALSE otherwise.

• to perform some specific computation on some user defined objects (U POINTER

Term). For example, you may have defined your own user type, a fancy
C structure which holds various information required by your application,
and you need a predicate which evaluate to TRUE if a this structure satisfies
a particular condition.

There are a number of things to consider when you write evaluable predi-
cates:

• Remember that you just need to return a PBoolean, i.e. TRUE or FALSE,
not a Term.

• Check the number of arguments which are passed to your function.

• Check the type of each argument you are getting. (do not assume that the
user will always pass the argument of the right type at the right position).

• Check that all the arguments are bound. This relates to the previous
comment as you will get a Term of type VARIABLE if a variable is unbound...

See [How to Define your Own Evaluable Predicates], §5.8.2, page 92, for
more information on this subject.

21.7 User Defined Actions

Do you need to define some actions? The answer to this question also depends
on your application. It usually depends on what kind of interaction or “actions”
(thus their name) you need to perform with the kernels. If your application only
prints some statements (such as advice to an operator), then you may not need
to define any actions. On the other hand, if your application needs to directly
interact with subsystems, then you will need to define some actions.

Keep in mind that if your application is organized in such a way that there
is a module which performs the real action on the world, and this module is
connected to the Message Passer, then most if not all the actions are done
using the Message Passer (i.e. by sending a message to the module in charge of
performing the action (a simulator or an interface to the real system).

Nevertheless, you may need actions for one the following reasons:

21.7. USER DEFINED ACTIONS 261

• to associate a specific functions to a OP, enabling the action to succeed or
fail and return the corresponding result. Many users tend to forget that
evaluable functions (as presented above) are evaluated at posting time,
i.e. when the goal in which their form is contained is posted. But their
evaluation is always meaningful and does not affect success or failure. For
example, in (! (foo (+ 3 4))), the (+ 3 4) will be evaluated right
away (unless you have deselected the eval on post option). However,
this evaluation is always feasible and always gives a result. For an action
(in fact a standard action), the result can be either T or NIL, and the
success or failure of the OP which calls it depends on this result.

• to perform some actions using code linked in your kernel. Keep in mind
that when you build your application, you may link some code into it.
For example, if your application is linked1 to an application-dependent
library, you want to call some of these functions, and these functions may
fail, then you need to define actions to call these functions.

• to time slice the execution of functions which take too long to execute.
Keep in mind that the reactivity of your system depends on the longest-
running actions and evaluable functions. Therefore, to increase the reac-
tivity of your kernel, you may have to time slice the execution of these
actions.

• to write functions which return a list of terms instead of one term. See
[Multi Variable Special Action], §4.3.3, page 70 for more details.

There are a number of things to consider when you write functions:

• Check the number of arguments which is passed to your function.

• Check the type of each argument you are getting. (do not assume that the
user will always pass the argument of the right type at the right position).

• Check that all the arguments are bound. This relates to the previous
comment as you will get a Term of type VARIABLE if a variable is unbound...

• Make sure you return a ‘new’ Term, and this recursively... Do not return,
for example, the value of one of the arguments passed to the function “as
is”, or a LISP LIST containing objects which have not been created by
your action.

• Make sure your function returns a Term containing either:

– The symbol T, the symbol NIL or the symbol :wait, if it is a Standard
Action. See [Standard Action], §4.3.3, page 69 for more details.

– Any kind of term or the symbol :wait, if it is a Special Action. See
[Special Action], §4.3.3, page 69 for more details.

1By “linked” we refer to the operation of linking in one program a number of functions
calling each other.

262 CHAPTER 21. SETTING UP AN OPRS APPLICATION

– A list (OPRS LIST) of any kind of term or the symbol :wait, if it is a
Multi Variable Special Action. The list should have exactly the same
number of elements as the list of variables against which it will be
unified. See [Multi Variable Special Action], §4.3.3, page 70 for more
details.

See [How to Define your Own Actions], §7.7.2, page 122, for more information
on this subject.

21.8 Do You Need Meta Level?

This question is somewhat difficult to answer. The following points have to be
considered before making a decision.

• Do you need a particular type of control in the main loop?

• Do you have to choose among various applicable OPs with a specific heuris-
tic?

• Do you mind “losing” or forgetting external events?

In any case, always use the right level of options in the kernel to suit your
meta level needs. For example, if your kernel does not use any meta level
reasoning, you should disable it in the kernel (see [Meta Level Reasoning], §9,
page 131. However, if it does, for example use the SOAK meta fact, you should
enable it and enable the conclusion of this particular fact (and disable all the
other one), see [OPRS Kernel Meta Level Option Commands], §2.7, page 35.

21.9 Intention Graph Manipulation

21.10 Data and Commands

If your OPRS application is embedded in a “real” or simulated environment, you
will probably get some data from this environment and you may send commands
to it.

In most case, these data and these commands will transit through the Mes-
sage Passer.

Example are provided in the ‘demo’ directory of connection between appli-
cations and OPRS Kernel through the Message Passer.

However, you can also design your own communication interface, which will
interact with the external application through evaluable predicate, functions or
actions.

21.11. LINKING C CODE IN THE KERNELS 263

21.11 Linking C Code in the Kernels

To be able to execute your own code in a OPRS Kernel or X-OPRS Kernel, you
need to link it to relocatable kernels.

Technically, a relocatable is an “almost executable” in which are missing a
number of functions. The OPRS Development Environment contains two relo-
catables, ‘oprs-relocatable’ and ‘xoprs-relocatable’ (and their C++ counterpart,
‘c++-oprs-relocatable’ and ‘c++-xoprs-relocatable’) . These files are almost like
‘oprs’ and ‘xoprs’ except that a number of functions are missing.

Apart from some system libraries needed to build the final executable, the
missing functions are:

declare_user_eval_funct

declare_user_eval_pred

declare_user_action

start_kernel_user_hook

end_kernel_user_hook

For the C++ version, the main is missing (so the user can have a C++
main) and is called oprs main (and takes the same argument as main).

Somehow, you need to define these functions. Example of these functions
are given in the ‘pub src’ directory, in the files: ‘user-action.c’, ‘user-action.h’,
‘user-ev-function.c’, ‘user-ev-function.h’, ‘user-ev-predicate.c’, ‘user-ev-predicate.h’,
‘user-external.c’, ‘user-external.h’ and ‘user-external f.h’.

When these files are defined, you need to write a Makefile more or less like
the following one:

OPRS_DIR =

include ${OPRS_DIR}/site.make

OPRS_INCL_DIR = ${OPRS_DIR}/include

USER_SRC = user-evaluable-predicate.c user-action.c user-evaluable-function.c user-external.c

USER_OBJ = user-evaluable-predicate.o user-action.o user-evaluable-function.o user-external.o

SRCS = $(USER_SRC)

INCLUDE = -I$(OPRS_INCL_DIR)

CFLAGS = $(ANSI) $(DEBUG_FLAG) $(OPTIMIZE) $(WARNINGS) $(MACHINE)

$(CFLAGS1) $(INCLUDE) $(X_INCLUDE) $(PROFILE)

LDFLAGS = $(ANSI) $(STATIC) $(DEBUG_FLAG) $(OPTIMIZE) $(PROFILE)

SYS_LIB = -lm

264 CHAPTER 21. SETTING UP AN OPRS APPLICATION

all: oprs xoprs

oprs: $(OPRS_DIR)/oprs-relocatable $(USER_OBJ)

$(CC) -o oprs $(USER_OBJ) oprs-relocatable

xoprs: $(OPRS_DIR)/xoprs-relocatable $(USER_OBJ) $(LIB_UTIL)

$(CC) -o xoprs xoprs-relocatable $(USER_OBJ) $(SYS_LIB) $(X_LIB)

21.12 Miscellaneous Questions

21.13 Common Mistakes

There are a number of mistakes which are commonly made. See [Known Prob-
lems and Things to Avoid], §M, page 387 for a list of potential pitfalls. Never-
theless, here is a list of common mistakes.

• Do not write OPs with evaluable predicate in their invocation part. They
will not become applicable, because of this predicate becoming true.

• If you write a goal such as (! (& (foo a $x) (boo b $y))), you may
achieve it if this conjunction is true in the database, but if it is not, there
are absolutely no way this specific goal may be achieved through a OP.
Because only texpressions are allowed in Invocation Part as element of
their gmexpression.

• When you declare a functional fact, do not forget the integer argument of
the declaration.

• Before launching a X-OPRS Kernel or OPRS Kernel, make sure a OPRS-
Server and a Message Passer are running.

Chapter 22

Simple OPRS Applications

22.1 Factorial Example

This fairly simple example introduces many different interesting concepts of
OPRS. It uses logical and program variables, it introduces meta level reasoning
and also presents some advanced features such as parallel goals intentions. This
example can be found in ‘data/fact-meta.inc’ and related files.

22.1.1 Factorial Example OPs

Here is the list of the procedures provided for this demo. They can be found in
the file ‘fact-meta.opf’.

• —Iterative Factorial—

A graphic OP.

Invocation: (! (FACTORIAL $N $RESULT))

Effects: ()

Properties: ((RECURSIVE NIL))

Documentation: This OP computes the Factorial of $n and unifies the result with $result.

It uses an iterative algorithm operating on local variables.

Note the RECRUSIVE NIL property which will be used by the

Meta level OP.

• —Meta Factorial test—

A graphic OP.

Invocation: (SSSOAK $X)

Context: ((& (EQUAL (LENGTH $X) 2) (EQUAL (OP-INSTANCE-GOAL (FIRST $X)) (OP-INSTANCE-GOAL (SECOND $X)))))

Effects: ()

265

266 CHAPTER 22. SIMPLE OPRS APPLICATIONS

Properties: ((DECISION-PROCEDURE T))

Documentation: This Meta OP chooses randomly which Factorial OP to intend.

Note that it is not used (because of its invocation part which

will not trigger).

• —Meta Factorial—

A graphic OP.

Invocation: (SOAK $X)

Context: ((& (EQUAL (LENGTH $X) 2) (EQUAL (OP-INSTANCE-GOAL (FIRST $X)) (OP-INSTANCE-GOAL (SECOND $X)))))

Effects: ()

Properties: ((DECISION-PROCEDURE T))

Documentation: This Meta OP chooses which Factorial OP to intend according

to the presence or not of the recursive property on the

applicable OPs.

Do not use this Meta OP in other applications.

• —Print Factorial—

A graphic OP.

Invocation: (! (PRINT-FACTORIAL $X))

Effects: ()

Documentation: This OP just looks for the factorial of $x and prints the result.

• —Recursive Factorial—

A graphic OP.

Invocation: (! (FACTORIAL $N $RESULT))

Effects: ()

Properties: ((RECURSIVE T))

Documentation: This OP computes the Factorial of $n in a recursive manner.

Note the RECURSIVE T property which will be used by the

Meta OP to decide which OP to intend.

• —Test //—

A graphic OP.

Invocation: (TEST_PAR)

Effects: ()

Documentation: This OP is here to illustrate the mechanism to intend in

parallel a certain number of goals.

In this case, the goal (! (print-factorial $x)) will be intended

in // for all the values 4, 5, 6 and 7.

22.1. FACTORIAL EXAMPLE 267

• —Test Fact—

A graphic OP.

Invocation: (FOO $X $Y)

Effects: ()

Documentation: This OP is here to demonstrate how one can call a goal

invoked OP with a fact. Note that it will only print the

result if $Y was bound to the right value... (you cannot

conclude a fact with unbound variable)

• —Test and Set Fact—

A graphic OP.

Invocation: (! (TAS-FACT $X $Y))

Effects: ()

Documentation: This OP is here to illustrate the TEST-AND-SET mechanism.

It will post the goal (! (factorial $x $y)) and according to

the success or the failure will print an appropriate message.

22.1.2 Other Factorial Example OPs

In this example, we use the new “if-then-else” node as well as the parallel thread
execution mechanism. These OPs can be found in the file ‘fact-meta-if-par.opf’.

• —Iterative Factorial—

A graphic OP.

Invocation: (! (FACTORIAL $N $RESULT))

Properties: ((RECURSIVE NIL))

Documentation: This OP computes the Factorial of $n and unifies the result with $result.

It uses an iterative algorithm operating on local variables.

Note the RECRUSIVE NIL property which will be used by the

Meta level OP.

• —Meta Factorial Goal—

A graphic OP.

Invocation: (APPLICABLE-OPS-GOAL $GOAL $X)

Context: ((& (EQUAL (LENGTH $X) 2) (== (GOAL-STATEMENT $GOAL) (! (FACTORIAL $PAR1 $PAR2))) (> $PAR1 10)))

Properties: ((DECISION-PROCEDURE T))

Documentation: This Meta OP chooses which Factorial OP to intend according

to the presence or not of the recursive property on the

applicable OPs.

Do not use this Meta OP in other applications.

268 CHAPTER 22. SIMPLE OPRS APPLICATIONS

• —Meta Factorial—

A graphic OP.

Invocation: (DONOT USE ME SOAK $X)

Context: ((& (EQUAL (LENGTH $X) 2) (EQUAL (OP-INSTANCE-GOAL (FIRST $X)) (OP-INSTANCE-GOAL (SECOND $X)))))

Properties: ((DECISION-PROCEDURE T))

Documentation: This Meta OP chooses which Factorial OP to intend according

to the presence or not of the recursive property on the

applicable OPs.

Do not use this Meta OP in other applications.

• —Print Factorial—

A graphic OP.

Invocation: (! (PRINT-FACTORIAL $X))

Documentation: This OP just looks for the factorial of $x and prints the result.

• —Recursive Factorial—

A graphic OP.

Invocation: (! (FACTORIAL $N $RESULT))

Properties: ((RECURSIVE T))

Documentation: This OP computes the Factorial of $n in a recursive manner.

Note the RECURSIVE T property which will be used by the

Meta OP to decide which OP to intend.

• —Test Factorial—

A graphic OP.

Invocation: (! (TEST-FACTORIAL $X $N))

Documentation: This OP just looks for the factorial of $x and prints the result.

Chapter 23

Complex OPRS
Applications

23.1 Truck Loading Example

This example is a real application, with a simulator and a user interface.

23.1.1 Truck Loading Example Presentation

This example presents a supervision and control problem with various complex
temporal constructions. As described on figure 23.1, an operator is in charge of
a refilling station. The process to supervise is basically the following. From time
to time, tank trucks come to the station. They are queued until a traffic light
(Queue Light) turns green. As soon as they are in place, a “truck in place” signal
is sent to the operator who has to turn the Queue Light to red again and waits
until the truck is ready to be filled (Filling Talkback shows Empty). He then
opens the valve controlling the product flow. This valve is opened and closed
using a two position switch on the control panel (Switch Valve). To monitor
the current position of the valve, two talkbacks with different sensors are used
(Talkback Sensor1 and Talkback Sensor2). These talkbacks can display the
following information: closed, open, and barber pole. Barber pole is displayed
by a talkback whenever the valve is neither open nor closed but in between
(most likely it is moving in position). Whenever the operator is filling up a
truck and a “truck full” signal is received (the Filling Talkback shows Full), he
immediately closes the valve. When the valve is considered as closed, he gives
an “OK to go” to the truck driver, by turning the Filling Light to Green. This
process goes on for ever during the whole day.

In the plan executed by the operator, different things can go wrong. The
most important failure is the valve not closing properly; a slightly less important
problem is the valve not opening properly. If the valve reportedly fails to open
or close and, if there is a serious doubt about its real position, the operator

269

270 CHAPTER 23. COMPLEX OPRS APPLICATIONS

Figure 23.1: Truck Loading Demo

must activate the emergency shutdown (the Stop Button), which is considered
as a “last resort” solution.

The inputs (and their respective values) of this control and supervision pro-
cess are displayed in the Control Board (the blue panel on the top).

The actions the operator can take are available from the Command board
(the bottom blue panel).

The operator does not see the bottom panel of the demo window which
displays the real world (trucks showing up, filling up, etc.). He can only rely on
the Control board to analyze the current situation, and on the Command board
to control the operations.

The three text windows in the upper part of the truck demo window display
information from various sources. Message: normal operation of the demon-
stration. Warning: abnormal states in the simulation. OPRS: message sent and
received from the controlling OPRS Kernel.

The six buttons below the text panes are used to (from left to right) quit the
demo, reset the demo, clear the text panes, disconnect from the OPRS Kernel,
connect to the Message Passer, and connect to OPRS Kernel.

The clock panel displays the current simulation time (from the simulator
when alone, or from OPRS Kernel when connected). It is also used to start or
stop the simulation time. There are also buttons to speed up or slow down the
simulation in non connected mode.

The Error board on the right can be used to modify a number of internal

23.1. TRUCK LOADING EXAMPLE 271

parameters of the demo. It is mainly used to create dysfunction.
In general, the operator should monitor the following conditions and take

various actions in response to these conditions:

• Talkback 1 and Talkback 2 disagree (one says OPEN, the other says
CLOSE). If this condition arises, the talkback which disagrees with the
switch is considered as failed.

• Talkback 1 and Talkback 2 show a barber pole for more than x seconds
(i.e. there are at least x seconds during which both talkbacks show barber
pole). The valve is jammed, emergency stop.

• Talkback 1 or Talkback 2 show a barber pole for more than y seconds. If
this condition arises, then the faulty Talkback is concluded as failed.

• z seconds after flipping the switch in one position or the other, the valve
is not reported in the right position by both talkbacks. This interval is
decreased down to w seconds if one of the talkback is failed. In this case,
an emergency shutdown is issued.

23.1.2 How to Install the Truck Loading Demo

The ‘demo/truck-demo’ directory should be placed or extracted in the ‘oprs’
directory. Then just type
% make truck-demo.

If everything goes well, you should end up with a truck-demo executable in
the ‘demo/truck-demo/bin’ sub directory, as well as a oprs and xoprs kernels
in the ‘demo/truck-demo/oprs’ sub directory. Note that you must use these
kernels as they define their own evaluable functions and predicates (which are
different from the one defined by default in the kernel).

This application is a good example of how to define your own actions, evalu-
able functions, predicates, etc...

23.1.3 How to Run the Truck Loading Demo

You first need to start the truck-demo. To do so, just execute the truck-demo

program produced by the make command.
At this point, you can play with the simulator as if you were the operator.

You are in “Alone” mode.
If you want to get OPRS to manage the “filling station”, start a oprs-server,

and then start a OPRS Kernel or X-OPRS Kernel with the following options
(you must use the kernels from the ‘demo/truck-demo/oprs’ directory as it
defines some specific evaluable functions or predicates):
% xoprs -n truck -x data/truck-demo.inc

You then need to issue an accept command in the OPRS-Server.
Go back in the truck-demo window, and click on ”Connect to the MP”

button, wait until the connection completes (the button is highlighted). Click

272 CHAPTER 23. COMPLEX OPRS APPLICATIONS

on the ”Connect to OPRS” button. If you have been playing with the demo
before connecting to the OPRS Kernel, it is necessary to reset the simulation
(by clicking on the Reset button) before connecting to OPRS.

From this point, the OPRS Kernel will control and supervise the filling truck
process. You will see the lights and the valve switching upon OPRS request, as
well as OPRS reacting to transients and to real problems.

Feel free to select the X-OPRS Kernel window and trace the OP used for
this demo.

A priori, OPRS Kernel takes care of the filling station “ad vitam eternam”.
If you want to produce an error (to check if OPRSwill find it), you can play
with the various settings of the Error board.

You can also improve the demo by adding OPs which will check other faulty
or error conditions. For instance, the ‘demo/truck-demo/oprs/data/truck-demo-
plus.opf’ contains a OP which checks that you are not switching a traffic light
on (to green) while the valve is open. (Note that this OP is not loaded by default
but can be added with the Load OP command from the X-OPRS Kernel).

23.1.4 Truck Loading Example OPs

Here is a list of the procedures provided for this demo. They can be found in
the file ‘truck-demo.opf’.

• —Day Plan—

A graphic OP.

Invocation: (! (DAY-PLAN))

Effects: ()

Documentation: This OP is the top level OP of the

system. It keeps loading truck until

the end of the day.

• —Load Truck—

A graphic OP.

Invocation: (! (LOAD-TRUCK))

Effects: ((~> (TRUCK-READY)) (~> (TRUCK-FULL)))

Documentation: This OP executes the whole plan to load

a truck.

• —Miscompare Talkback—

A graphic OP.

Invocation: (POSITION $T1 $POS1)

Context: ((? (& (ALARM YES) (TYPE TB $T1) (|| (ASSOCIATED-TB $T2 $T1) (ASSOCIATED-TB $T1 $T2)) (STATUS $T1 GOOD) (STATUS $T2 GOOD) (POSITION $T2 $POS2) (|| (& (EQUAL $POS1 OPEN) (EQUAL $POS2 CLOSE)) (& (EQUAL $POS1 CLOSE) (EQUAL $POS2 OPEN))) (POSITION SWITCH-VALVE $POSS))))

23.1. TRUCK LOADING EXAMPLE 273

Effects: ()

Documentation: This OP detects miscomparison in Talkback position.

When the two talkbacks are opposed (one open, the

other close) the one which is opposed to the switch

is declared failed.

• —Move Valve no alarm—

A graphic OP.

Invocation: (! (POSITION VALVE $X))

Context: ((? (ALARM NO)))

Effects: ((=> (POSITION VALVE $X)))

Documentation: This OP tries to put the valve in position $x.

It waits ($del-2tbs) time units if the two

sensors are good, or ($del-1tb) time units

if only one is good.

After this time, it shutdowns if the trusted

sensor(s) is not in good position.

• —Move Valve—

A graphic OP.

Invocation: (! (POSITION VALVE $X))

Context: ((? (& (ALARM YES) (DELAY TWO-GOOD $DEL-2TBS) (DELAY ONE-GOOD $DEL-1TB))))

Effects: ((=> (POSITION VALVE $X)))

Documentation: This OP tries to put the valve in position $x.

It waits ($del-2tbs) time units if the two

sensors are good, or ($del-1tb) time units

if only one is good.

After this time, it shutdowns if the trusted

sensor(s) is not in good position.

• —Reset Demo—

A graphic OP.

Invocation: (! (RESET))

Effects: ((=> (STATUS SENSOR1 GOOD)) (=> (STATUS SENSOR2 GOOD)) (~> (TRUCK-READY)) (~> (TRUCK-FULL)) (=> (TRUCK-PLACED NO)) (=> (POSITION VALVE CLOSE)) (=> (POSITION SENSOR2 CLOSE)) (=> (POSITION SENSOR1 CLOSE)) (=> (POSITION SWITCH-VALVE CLOSE)) (=> (POSITION QUEUE OFF)) (=> (POSITION FILLING OFF)))

Documentation: This op ever succeds, and will

reset all the used facts to the

initial value, in the effect part.

• —Reset and run truck loading—

A graphic OP.

274 CHAPTER 23. COMPLEX OPRS APPLICATIONS

Invocation: (RUN-DEMO)

Context: ((? (CLIENT $REQUESTER-NAME)))

Effects: ()

Documentation: This OP resets all the used facts to the

initial value; and then posts the goal

(!(day-plan)) for running the demo.

• —Shutdown—

A graphic OP.

Invocation: (! (SHUTDOWN $MESSAGE))

Context: ((? (CLIENT $REQUESTER-NAME)))

Effects: ()

Documentation: Send the message to shutdown the demo,

then an explanation.

Post the goal echec to fails the OP.

• —Talkback in BP—

A graphic OP.

Invocation: (POSITION $T BP)

Context: ((? (& (ALARM YES) (TYPE TB $T) (STATUS $T GOOD) (DELAY TB-FAIL $DEL-FAIL))))

Effects: ()

Documentation: This OP detects if a Talkback stays

too long in barberpole position.

• —Talkbacks in BP—

A graphic OP.

Invocation: (POSITION $T1 BP)

Context: ((? (& (ALARM YES) (STATUS $T1 GOOD) (|| (ASSOCIATED-TB $T1 $T2) (ASSOCIATED-TB $T2 $T1)) (STATUS $T2 GOOD) (POSITION $T2 BP) (DELAY TBS-BP $DEL-FAIL))))

Effects: ()

Documentation: This OP detects the two Talkbacks in barberpole position

for a too long time.

• —Time Halt—

A graphic action OP.

Invocation: (HALT-TIME)

Effects: ()

Action: (HALT-OPRS-TIME)

23.1. TRUCK LOADING EXAMPLE 275

Properties: ((PRIORITY 1))

• —Time Init—

A graphic action OP.

Invocation: (! (INIT-TIME $TIME))

Effects: ()

Action: (INIT-OPRS-TIME $TIME)

• —Time Run—

A graphic action OP.

Invocation: (RUN-TIME)

Effects: ()

Action: (RUN-OPRS-TIME)

• —Time Send—

A graphic OP.

Invocation: (GIVE-ME-TIME $REQUESTER-NAME $INITIAL-TIME)

Context: ((? (CLIENT $REQUESTER-NAME)))

Effects: ((~> (GIVE-ME-TIME $REQUESTER-NAME $INITIAL-TIME)) (~> (STOP-TIME $REQUESTER-NAME)))

Properties: ((PRIORITY 2))

• —Warning Messages—

A graphic OP.

Invocation: (! (WARNING $MESS))

Context: ((? (CLIENT $CLIENT)))

Effects: ()

Documentation: Send a warning message to the client.

• —client-accept—

A graphic OP.

Invocation: (INIT-DEMO $REQUESTER-NAME)

Effects: ()

• —client-leave—

A graphic OP.

Invocation: (GOOD-BYE $REQUESTER-NAME)

276 CHAPTER 23. COMPLEX OPRS APPLICATIONS

Effects: ((~> (CLIENT $REQUESTER-NAME)) (~> (STOP-TIME $REQUESTER-NAME)))

Documentation: This OP will kill all other intentions,

and clean up some facts.

• —switch light—

A graphic OP.

Invocation: (! (LIGHT $LIGHT_ID $STATUS))

Context: ((? (& (CLIENT $REQUESTER-NAME) (TYPE LIGHT $LIGHT_ID))))

Effects: ()

• —switch valve—

A graphic OP.

Invocation: (! (POSITION SWITCH-VALVE $STATUS))

Context: ((? (CLIENT $REQUESTER-NAME)))

Effects: ()

• —truck-sensor change—

A graphic OP.

Invocation: (TRUCK-IN-PLACE $VAL)

Context: ((? (TYPE PLACED-STATUS $VAL)))

Effects: ((~> (TRUCK-IN-PLACE $VAL)))

One can also find an extra OP, in the file ‘truck-demo-plus.opf’.

• —Light Change—

A graphic OP.

Invocation: (POSITION $L1 ON)

Context: ((AND (TYPE LIGHT $L1) (POSITION VALVE OPEN)))

Effects: ()

Documentation: This OP detects a traffic light switched on while

the valve is still open.

Chapter 24

Applications of OPRS

If there exist a priori no exclusive domain of application to Procedural Rea-
soning, some seem more adapted than other. They can be identified by the
following characteristics, which are illustrated with different applications where
Procedural Reasoning was applied:

Control & Supervision of Complex Systems: In this kind of application,
one or several operators are in charge of executing and following, under
some well defined conditions, the procedures the system designers estab-
lished. These procedures cover the nominal mode of the system, as well
as emergency and critical situation like alarms, or threshold overshooting.
(Example: Telecommunication Network Supervision).

Operator Assistance: For various, reasons, replacing operators of complex
systems with autonomous systems is not always recommended. However,
operators tend to make mistakes, with potentially dramatic consequences,
whenever they are overflowed with storms of alarms and data. For this
very reason, it is very important to assist them in the most tedious tasks,
or in those requiring quick responses, like in power plant supervision, or
in threat assessment systems.

Automation of predefined procedures execution: In many domains, com-
plete folders of procedures have been written to describe all the reachable
states of the system (planes, space shuttle). Here also, operators assure
the triggering, retrieval, and execution of these procedures.

On-line planning and execution control: These activities combine the plan-
ning of task and actions, and the control of their execution. By planning,
we mean that the system chooses at run-time a solution among a set of
possibilities, and this according to some general criteria. Execution control
checks that the chosen plan or procedure is executing properly (example:
execution control of a mobile robot, pilot associate).

277

278 CHAPTER 24. APPLICATIONS OF OPRS

Diagnosis & Troubleshooting: The decision trees used in diagnosis activi-
ties show a procedural structure. Thus, troubleshooting is usually done
by following the procedures which, test after test, determine the system
faulty component (examples: troubleshooting of radar system). Note that
these tests can be arbitrary complex and require the execution of other
procedures.

Operator Training: Given its graphical capabilities, procedural reasoning can
also be used for operator training. As a matter of fact, problems can be
simulated for the operator to follow the procedures the system is currently
running (example: operator training in the space shuttle mission control
room).

In every domain presenting these characteristics or properties, procedural
reasoning is the solution that improves system safety, speed up response time
and reduces operating costs.

Chapter 25

Optimizing an OPRS
Applications

25.1 Optimizing Hashtables

A number of commands (see [OPRS Kernel Miscellaneous Commands], §2.13,
page 42) or menus (see [Stat All Hashtables], §13.3.3, page 193, and others) are
available to obtain statistics on the use of the various hashtables of the kernel.

When you select these commands, you get the following printout (this one
was obtained with a stat all command):

The id hashtable contains:

442 element(s)

in 355 buckets (1024);

with a maximal number of 4 element(s) in one bucket.

The database hashtable contains:

48 element(s)

in 48 buckets (1024);

with a maximal number of 1 element(s) in one bucket.

The predicate hashtable contains:

107 element(s)

in 51 buckets (64);

with a maximal number of 5 element(s) in one bucket.

The function hashtable contains:

146 element(s)

in 57 buckets (64);

with a maximal number of 6 element(s) in one bucket.

You can then analyze the result and decide if a specific hashtables is over-
loaded or not. You may then decide to change its size (reduce it or increase it)
using the argument of the oprs or xoprs command (which are the same for this
matter) (see [Arguments to the oprs Command], §1.2, page 22).

279

280 CHAPTER 25. OPTIMIZING AN OPRS APPLICATIONS

Note that these statistic are “static” in the sense that they give you snapshots
of the use of your hashtables. However, most of them (except the database and
id hashtable) are loaded upon starting the kernel and do not evolve much during
the execution. Nevertheless, for the database hashtable, you should stat it at
different time of the execution to figure out its maximum size and conclude
then which size is the most appropriate. As for the id hashtable, or the symbol
hashtable, keep in mind that this hashtable cannot be cleared by any mean. As
a result, if you keep adding new symbols in the kernel, then this will be an ever
growing hashtable.

Last, you may consider reducing the size of the hashtables (after all , the
default values may far exceed your need). This will have the advantage of
reducing the size of the kernel, by the amount of memory saved.

Keep in mind that since release 1.1, all these hashtable are mostly used
at compile time. The id, the function and the predicate hashtables are use
at runtime just to parse coming external events, and user commands (which
explain why they are kept).

25.2 Just the Right Level of Meta Level

This is probably one of the easiest optimization one can do... and if it has not
been done, it can be one of the most profitable optimization.

You should always use the right level of options in the kernel to suit your
meta level needs. For example, if your kernel does not use any meta level
reasoning, you should disable it in the kernel (see [Meta Level Reasoning], §9,
page 131) with a set meta off command or with the option menu of the X-
OPRS Kernel. However, if it does, for example use the SOAK meta fact, you
should enable it and enable the conclusion of this particular fact (and disable
all the other one).

25.3 Database Organization

Database optimization can be of different type. First you should optimize the
size of its hashtable (not too big, not too small), see [Optimizing Hashtables],
§25.1, page 279.

25.4 Slicing your Action

One of the important point to consider when optimizing an application is the
time taken by actions. If their execution takes too long time, you should consider
recoding them to slice their execution in smaller time chunk. This can be done
using the action slicing mechanism (see [Action Slicing], §10.11, page 143).

See action first call and action number called, [Intention Manipula-
tion Functions], §G.1.8, page 340.

Part X

Appendices

281

Appendix A

Principal Differences
Between C-PRS and OPRS

283

284APPENDIX A. PRINCIPAL DIFFERENCES BETWEEN C-PRS ANDOPRS

Appendix B

Principal Differences with
SRI PRS

One of the principal concern while writing C-PRS and OPRS was to improve
some of the known problems in SRI Lisp PRS. As a consequence, there are
minor differences between the two versions.

1. The syntax is far more rigorous in OPRS. As a result, a number of ex-
pressions perfectly correct in the Lisp PRS are not recognized by OPRS.
For example, the following goal is not allowed:
(! (SEND-COMMAND-ACTION (DISPLAY-FOO (((CURRENT $O) (CURRENT

$B))))))

because
(((CURRENT $O) (CURRENT $B)))

is not a valid Composed Term. Similarly, this goal:
(! (& (~> (FOOBAR $P $A)) (=> (FOOBAR $P $A)))))))

is not allowed any longer. . . It should be replaced with:
(& (~> (FOOBAR $P $A)) (=> (FOOBAR $P $A))))))

2. The following syntax is still allowed:
(! (=> (INITIAL-VALUE $P $O $D $V)))

but should be replaced with the => temporal operator (a similar remark
holds for ~>) .

3. The @ variables have the expected behavior. In SRI PRS, the only way
to rebind a variable was to use a goal such as (! (= @x ...)). This
limitation has been removed in OPRS, and the @ variables can be rebound
in any context.

4. The database uses a term indexing mechanism which has been extended
recursively (SRI PRS version did not handle embedded composed terms
properly).

285

286 APPENDIX B. PRINCIPAL DIFFERENCES WITH SRI PRS

5. The wait temporal operator is cleaner in OPRS as it succeeds only when
it has been achieved. . . In SRI PRS, it always succeeded (but it sleep
until the condition was satisfied).

6. The database file has not quite the same format. You need to give a list
of facts, not just the facts in a file. To convert your already existing files,
just add an open parenthesis at the beginning, and a closing one at the
end, and remove all the declarations of functional facts, basic events, and
so on.

7. OPRS does not support the negation as a failure, nobody ever used it
anyway.

8. Closed world predicates, evaluable functions and evaluable predicates are
“local” to a OPRS agent which is much better.

9. SOAK and other meta facts are now basic event (see [Basic Events], §5.7,
page 86).

10. OPRS has no support for bignum. . . As a general rule, extreme caution
should be exercised regarding the availability of Lisp specific functions
or features. We do not plan to rewrite a complete Lisp interpreter in
OPRS. . . (this would defeat the main argument for writing OPRS).

11. OPRS checks predicates, functions and symbols when you compile OPs.

12. Basic events are just declared with their predicates, not the predicates
and the number of arguments, since we considered this feature useless.

13. The achiever field in OPs is not supported anymore. If it exists, it does
not even shows up in the OP Editor or in the X-OPRS Kernel, but a
warning is issued. Moreover, its value is not taken into account by the
kernel (here also, this feature has hardly been used. . . so it was not worth
putting in the C version.)

14. Lisp lists are not “standard” objects: you need to specify them with a
different reader syntax (. .) to distinguish them from composed terms.

15. The default OPs are not loaded by default in the OPRS Kernel. In fact
the notion of default OPs is a little weak, and we consider that it is up to
the end-user to decide which OPs are required in the kernel. Of course, we
still provide a number of OP the user can load in its kernel(see [Default
OPs], §F, page 309).

16. The APPLICABLE-OPS-FACT and the APPLICABLE-OPS-GOAL facts have dif-

287

ferent arguments in OPRS Kernel. Their syntax is:
(APPLICABLE-OPS-FACT fact list-of-op-instances)

and
(APPLICABLE-OPS-GOAL goal list-of-op-instances).
In SRI PRS it was:
(APPLICABLE-OPS-FACT list-of-op-instances)

and
(APPLICABLE-OPS-GOAL list-of-op-instances).

17. By default, the OPRS Kernel always evaluates what is evaluable in a goal
at posting time, unless the evaluable function is quoted (see [Current and
Quote], §10.7, page 141). This greatly simplify the syntax of the OPs
as one do not need to put current all over the place... Note that there
is a flag in case you prefer the old form, see [OPRS Kernel Run Option
Commands], §2.6, page 34 for more details.

18. The *FACT and *GOAL marker in the general meta expression are not rec-
ognized in recent version of OPRS. Version of the OP-Editor prior to 1.3
will recognize them and will thus convert your old OP to the new format.

288 APPENDIX B. PRINCIPAL DIFFERENCES WITH SRI PRS

Appendix C

Principal Differences
Between Subsequent
Versions of C-PRS

C.1 Changes Between Version 1.0 and Version
1.1

There are a number of small changes which can be of interest to the user. For
more information, consult the ‘NEWS’ file int the C-PRS distribution.

• Change the string pattern to allow " in it. We are now using the C string
syntax... But for now, just the
", such as in "foo bar

"asd asd

"". Internally, strings now do not have double quote around as they used
to. Now they are just C strings.

• Added a printf function, more like the C one. Example:
(printf (format "The %d of %s is %f." $x $y $z))

• Added a list of symbols in the OP Editor and in the OPF format.

• The kernel is now able to read pointer values.

• Added a new way of scheduling intention. Instead of giving a sorting
predicate, it is given the list of runnable intentions, and it can be ordered
as the user want. This make it easier to make time sharing stuff for
example.

• Added an extern x oprs top level widget for the user to create its own
widget tree in X-OPRS Kernel.

289

290APPENDIX C. PRINCIPAL DIFFERENCES BETWEEN SUBSEQUENT VERSIONS OF C-PRS

• Defined the OPRS DATA PATH environment variable and the corresponding
-d argument. This is a list of directories where C-PRS will look for data
files.

• Defined OPRS MP PORT, OPRS SERVER PORT, OPRS SERVER HOST and OPRS MP HOST

environment variables, and changed the various programs accordingly to
take them into account. (command arguments have a higher priority than
environment variables).

• Defined a OPRS DOC DIR environment variable to point to the documenta-
tion directory.

• Implementation of INT ARRAY and FLOAT ARRAY. Added [and] as reader
characters to recognize arrays. The type of the array is determined from
the first element. Subsequent elements are casted appropriately.

• Implementation of U POINTER user pointer to user defined objects.

C.2 Changes Between Version 1.1 and Version
1.2

There are a number of important changes between version 1.1 and version 1.2.
Only the important one are listed in the following sections.

C.2.1 Changes in the Commands Syntax of the OPRS
Kernel

To clarify it and to make it more easy to use, the command set of the OPRS
Kernel has been greatly improved and unified.

Here is a table of correspondence between the 1.1 command and their new
syntax in 1.2 and above. The commands which are not referenced have not
changed.

A shell script ‘update-inc-file’ in the ‘util’ directory of the distribution, is
provided to allow the user to automatically translate its ‘.inc’ and ‘.sym’ files
from versions previous to 1.1 to version 1.2.

C.2.2 Miscellaneous Changes Between Version 1.1 and Ver-
sion 1.2

There are a number of small changes which can be of interest to the user. For
more information, consult the ‘NEWS’ file in the C-PRS distribution.

• Added a new option to the OPRS Kernel and to the X-OPRS Kernel to
start without registering to the OPRS-Server (-a).

• Added a new command in the OP Editor (relevant OP) to find the OP
relevant for a particular edge.

C.2. CHANGES BETWEEN VERSION 1.1 AND VERSION 1.2 291

1.0 1.1.1 Section
show db show db 2.2
save db save db 2.2
empty db empty fact db 2.2
declare cwp declare cwp 2.9
declare be declare be 2.9
undeclare be undeclare be 2.2
declare ff declare ff 2.9
load db load db 2.2
delete op delete op 2.3
unload opf delete opf 2.3
print op show op 2.3
traceg op trace graphic op 2.3
tracet op trace text op 2.3
traceg opf trace graphic opf 2.3
tracet opf trace text opf 2.3
list ops list op 2.3
list opfs list opf 2.3
compile ops load opf 2.3
empty op empty op db 2.4
trace rop trace relevant op 2.5
trace opc trace load op 2.5
trace soak trace applicable op 2.5
trace fact trace fact 2.5
trace goal trace goal 2.5
trace db frame trace db frame 2.5
set fact inv set meta fact 2.7
set goal inv set meta goal 2.7
set app ops fact set meta fact op 2.7
set app ops goal set meta goal op 2.7
set eval on post set eval post 2.6
set par post set parallel post 2.6
set par intend set parallel intend 2.6
consult rop consult relevant op 2.13
consult aop consult applicable op 2.13
show sleep int show intention 2.13
show mem show memory 2.13
declare declare id 2.9
unifie unify 2.13
stat db stat db 2.13
stat op stat op 2.13
stat id stat id 2.13
stat all stat all 2.13
reset kernel reset kernel 2.13

Table C.1: Commands Equivalence Between Version 1.1 and 1.2

292APPENDIX C. PRINCIPAL DIFFERENCES BETWEEN SUBSEQUENT VERSIONS OF C-PRS

• Added an option to the OP Editor to convert op files to the newest format
op-editor -c <file(s)>.

• Time stamping is now controlled by a flag (it is too expensive to keep it
all the time).

• Wrote a default op to broadcast a message. Wrote a broadcast-message
action. Added a broadcast mode to the message passer. I separated the
modules which can receive and the one which can send (the OP Editor
and the OPRS-Server do not receive). Therefore, the Message Passer
never sends anything to the OPRS-Server and the OP Editor.

• Added a val evaluable function which returns the value on which variable
points... In fact it is the identity function, but it can be very useful to
force getting the value of program variables.

• Added a number of new commands and associated tokens: list cwp,
list be, list ff, list ep, list ef, list action and list all.

• Wrote a show intention command (also available as a menu item) which
gives an extensive status of the intentions and their component (thread,
status, waiting condition, joining, etc.).

• Added code to execute all the root of the intention graph in //. This
is controlled with a flag (set parallel intention on/off) and in the
option menu. Default value of the flag is on.

• Added op predicate, i.e. predicate which can only be satisfied by OP not
in the database.

• Now the Message Passer is started automatically by the application which
want to connect to it. In other words, if a connection failed because
nobody is listening on the host/port, then a Message Passer is started on
this host/port. We use rsh to start the mp on a remote host, and fork to
start it on the same host.

• Added a new program kill-mp to kill the Message Passer. It registers to
the Message Passer and kill it.

• To prevent conflict with types defined in VxWorks system includes... the
type LIST and NODE have been renamed OPRS LIST and OPRS NODE.

• Change the registration to the Message Passer mechanism to pass the reg-
istration protocol as argument... and to return a status to deny/allow the
registration. This change makes the registration mechanism incompatible
with the previous version.

C.3. CHANGES BETWEEN VERSION 1.2 AND VERSION 1.3 293

C.3 Changes Between Version 1.2 and Version
1.3

There are a number of important changes between version 1.2 and version 1.3.
The most important change between version 1.2 and 1.3 is the text OPs and is
described in the See [Text OPs], §4.3.4, page 70 section.

C.3.1 Miscellaneous Changes Between Version 1.2 and Ver-
sion 1.3

There are a number of small changes which can be of interest to the user. For
more information, consult the ‘NEWS’ file in the C-PRS distribution.

• Added CONS-TAIL and LAST evaluable function.

• ope-graphic.c (scroll bars moved): Wrote a function to get the horizontal
and vertical motion at the same time (to avoid this the awful steppy look
of the redrawing).

• mp-oprs.c: added a -l ”file name” arg to specify an log file (in which mp
will log all the message which went thru it).

• xp-op-graphic.c xp-rop.c: Extend the relevant OP mechanism, to the in-
vocation and context parts in the X-OPRS Kernel and in the OP Editor.

• Added a ”stepped” and ”all” button in the Trace OP dialog box.

• Added the next, step, halt and run commands in the oprs kernel.

• Added a ”show run status” command in the OPRS Kernel.

• The step by step execution of OP is now controled by a separate flag
(not the graphic traced one anymore). The commands ”trace step op ...
on/off” et ”trace step opf ... on/off” have been added.

• Added == as evaluable predicate to allow fancy construction such as (?
(V (== (..) (..)) (== (...) (...)))).

• Added a scheduler for parallel intententions.

• Added evaluable functions to return user, system and user+system clock
tick: USER-SYS-CLOCK-TICK, USER-CLOCK-TICK, SYS-CLOCK-TICK.
These do not work under VxWorks.

• Added a ”transmit all” command in the oprs-server to transmit the same
command to all connected kernel.

294APPENDIX C. PRINCIPAL DIFFERENCES BETWEEN SUBSEQUENT VERSIONS OF C-PRS

• Added an option to have symbol in lower case or any case. The default is
still upper case. The authorized options are ”upper”, ”lower” or ”none”.
You may specify this option by setting the OPRS ID CASE environment
variable:
setenv OPRS ID CASE none
or in the command line with the ’-l’ option:
xoprs -n Foo -l none -x ...
The command line has precedence on the envionment variable. This option
is avaible for the OPRS-Server, the PK, and the OP Editor.

• Change the command list op predicate in list op predicate and
declare op predicate in declare op predicate.

• Report the expr being concluded when an attempt is made to conclude
such expr containing a variable.

• Added a LISP LIST intersection and a LISP LIST union functions.

• mp socket has default value of -1 (to detect unitialization for example).

• Added a memq ep evaluable predicate MEMQ.

• start kernel user hook is now executed before the initial command (i.e.
load with the -x).

• The name of the opfile appears in all op lists presented to the user.

• xp-dialog.c: Added the Conclude from Parser trace in X-OPRS Kernel.

• Added a find atom function which does like make atom but warn you if
the symbol had not been declared previously.

• Many prompt dialog box have been changed to provide an history of the
previously entered commands.

• Added a build string function to build a Term from a string, making a
copy of the string. This is the function external users should use.

• Added a show oprs data path and a set oprs data path <string> com-
mand.

• Added a trace conclude command to trace conclude operation per-
formed by the user.

• The X-OPRS Kernel menus have been reorganized.

• Added a Display Next OP and Display Previous OP in X-OPRS Ker-
nel.

• The Message Passer registering functions have been changed. This change
make them incompatible with previous versions of the Message Passer.

C.3. CHANGES BETWEEN VERSION 1.2 AND VERSION 1.3 295

• In the various parsers, we have added some code to check we are not
opening a directory instead of a file.

• Added extern ”C” declaration in all the public include files which may be
used by a c++ compiler.

• Added a verbose argument -v to the Message Passer to trace all messages.

• An error handler for external code errors is now provided.

• One can log in a file all the output made in the X-OPRS text window
using the -log argument to X-OPRS.

• Now we can have the text trace associated to a particular intention in
its own window... To create this particular window, right click on the
intention in the intention graphic pane. Middle click gives an overview of
the intention current status.

• The database is sorted before being printed.

• Some trace messages have been shortened to make the trace less verbose.

• Added build nil and build t which return a Term with t or nil as atom.
Useful for evaluable functions and actions.

• Reorganised the option menu in X-OPRS. We now have three different
option dialog boxes (Run, Compiler/Parser and Meta Level).

• Implementation of a = ev-predicate... It works... it is faster... and it allows
setting variable in invocation part parsing. (requested by rachid@laas.fr).

• Added a Show Global Variable menu and a ”show variable” command to
print the global variables list.

• The Message Passer kills itself after an hour with no new connection and
when nobody is registered.

• Added a show memory menu.

• Added a delete fact and conclude fact command in the X-OPRS Ker-
nel.

• Memory consumption has been improved.

• The list of variables do not appear anymore in the frame bindings.

• Added a require command which does like include except that it check
this file has not been already loaded with another require command (see
[OPRS Kernel Loading Commands], §2.4, page 32).

• When broadcasting, do not send the message to the sender.

296APPENDIX C. PRINCIPAL DIFFERENCES BETWEEN SUBSEQUENT VERSIONS OF C-PRS

• Added two new flags to control predicate and function declaration. They
can be changed with set predicate|function on|off (see [OPRS Ker-
nel Compiler/Parser Option Commands], §2.8, page 36).

• Added two new commands: declare predicate and declare function

commands (see [OPRS Kernel Declaration Commands], §2.9, page 37).

• Added a delete fact (see [Delete Fact Database], §13.3.2, page 185) and a
conclude fact (see [Conclude Fact Database], §13.3.2, page 185) command
in X-OPRS Kernel.

• There is a semaphore OP library available (see [semaphore.opf], §F.4, page
330).

• the Write TeX Doc File command is now public (see [Write TeX Doc File],
§16.1.1, page 222).

• ope/Parser.l: Dropped the *GOAL and *FACT syntax... If you still have
OP using this syntax, use the 1.2 OP editor to convert your OP file.

• Modified the parser to count lines in files and in strings so we can report
where are the errors more accurately.

• Kernels and op-editor can now print the temporal operators in english...
This is controlled by a flag which can be set at startup time with the
”-peo” (PrintEnglishOperator) option for xoprs and op-editor and ”-p”
option for oprs. This can also be specified as a ressource named *print-
EnglishOperator (True or False). Default value is always false... and the
OP written in files are written with the short version. Clean up all the
TEST symbol in the various test file... (remember that TEST is now a
reserved word).

• XOprs.ad: Added a resource setting to enable/disable word wraparound
in the textWindow.

• All grammar share the same basic files. So the lexical grammar is now
consistent other the 4 modules using it (oprs, xoprs,op-editor and oprs-
server).

• Removed support for grasper graph and sun graph.

• Created accelators in the op editor to quickly access all the edit modes.
This is user customizable with the default file. By default, they are accel-
erated with one letter (which is present as a mnemonic on the text of the
button). No modifier are used (meta,control, nor shift).

• The id cannot start with a : character. (reserved for keywords in text op).

• data/new-default.opf: Removed test and test-and-set which are now ob-
solete and conflict with the test symbol used as a temporal operator.

C.4. CHANGES BETWEEN VERSION 1.3 AND VERSION 1.4 297

• ev-predicate.c: defined some new predicates: NUMBERP, CONSP, STRINGP,
and ATOMP.

• mp-register.c and send-message.c are using the standard malloc...

• Grammars allows temporal operator in clear (achieve, test, preserve, main-
tain, wait, conclude and retract).

• The function make and declare action, make and declare eval func and
make and declare eval pred do not take a hash table argument anymore.
Please, modify your code accordingly.

• macro-pub.h and macro.h (MALLOC): is now defined in macro-pub for
the final user to allocate object for the kernel.

• Added OPRS DATA PATH support under VxWorks.

• ope-save.c (write opfile header): Added the version status in the OP file
header.

• XOprs.ad. The linotype helvetica looks ugly... I had to force the adobe
one in the font set.

C.4 Changes Between Version 1.3 and Version
1.4

C.4.1 Main Changes Between Version 1.3 and Version 1.4

There are a number of important changes between version 1.3 and version 1.4.
The most important changes between version 1.3 and 1.4 are:

• The possibility to dump various internal data (OPs and database for now),
and the various dump commands. Note that the dump format is archi-
tecture independant. Note also, that the garphical information may be
dumped or not, according to the kernel from which you dump the datas.
While loading OP, if a OP with a name and a filename is already loaded,
the newly loaded OP is ignored. See [OPRS Kernel Dumping/Loading
Commands], §2.11, page 39 for more information on this.

• A better support for the VxWorks version (which now supports the Mes-
sage Passer and the kill-mp programs). See [VxWorks], §D.1, page 301
for more information on this.

• Support for multiple languages (French and English for now) and for iso-
latin characters set.

• The non graphical version of the various OPRS Development Environment
programs have been ported and work under Windows 95 and Windows NT.
See [Windows95-NT], §D.4, page 303 for more information on this.

298APPENDIX C. PRINCIPAL DIFFERENCES BETWEEN SUBSEQUENT VERSIONS OF C-PRS

• No more LISP CAR. LISP LIST now contains Terms, and Terms can now
be Intention, Fact, Goal and Op Instance. They are not readable though.
One can remove all the term to car and car to term fuctions, these are
obsolete and NO-OP now.

• Introduction of a contrib directory in the distribution which contains
code contributed by various people but which is not part of the OPRS
distribution.

C.4.2 Miscellaneous Changes Between Version 1.3 and Ver-
sion 1.4

There are a number of small changes which can be of interest to the user. For
more information, consult the ‘NEWS’ file in the C-PRS distribution.

• Added a -x option to the Message Passer to specify that new connection
with already registered name should lead to the disconnection of the older
client.

• Node name are printed (in graphic) without the vertical bar.

• Replace the LEXPRESSION term type with the GEXPRESSION as they are
easier to manipulate...

• When printing the value of a variable, still print the variable name if no
value was found/bound.

• Allow id starting with : (like keywords).

• Added evaluable functions mention and all-pos.

• Added macro to warn the user of the use of obsolete user functions.

• Added functions to allow the posting of fact from user call function. Under
VxWorks, this even can been done from another process (the posting is
then protected with a semaphore to ensure mutual exclusion). See [Fact
Posting Functions], §G.1.7, page 338 for more information on this.

• oprs-type-pub.h: Due to some stupid type definition in Microsoft Win-
dows, we had to replace the type FLOAT with TT FLOAT and ATOM
with TT ATOM.

• Big clean up in the VxWorks version to free all the memory used when
one exit/kill a kernel. This way, one can restart another oprs on the same
board, without loosing any memory allocation. In fact, this mechanism is
used on all kernels, which explain why it takes sometime a long time for
a kernel to exit. However, this mechanism is a good leak detector.

• Check all conditions after loading a database.

C.4. CHANGES BETWEEN VERSION 1.3 AND VERSION 1.4 299

• Two different commands to print graphics OP and text OPs.

• The OP printed in the file are now pretty printed.

• Do not allow id starting with a + or -

• Just one "

n.

n" should be necessary to reset the OPRS-Server parser.

• ASSERT is now equivalent to CONCLUDE, and it prints ASSERT instead
of CONCLUDE.

• Added an intention failure trace which reports when an intention failed,
with the stack of goals which lead to the failure.

• XOprs.adlang: Language dependent ressource file.

300APPENDIX C. PRINCIPAL DIFFERENCES BETWEEN SUBSEQUENT VERSIONS OF C-PRS

Appendix D

Hardware and Software
Dependancies

Although OPRS is portable and runs on a large number of platforms, there exist
some differences which are presented in this chapter.

D.1 VxWorks

The VxWorks version of OPRS has a lot of particulariries. Although there are
no main programs under VxWorks, we distinguish between task spawnable code
and library code (i.e. which may be used by more than one processes). Files
with a ‘.o’ suffix are considered as library and can be used by more than one
processes. Files without any suffix usually contain a main which can be called
with taskSpawn or from the shell.

The VxWorks distribution is composed of three programs and two libaries:

‘c toolkit.o’ This library is used by the ‘vxoprs’ and ‘vx-mp-oprs’ components.
It can be shared by more than one programs. The proper variable are
taskVar’ed.

‘vx-mp-lib.o’ This library is used by any application which want to connect
to the message passer. It can be shared by more than one programs. The
proper variable are taskVar’ed. ‘vxoprs’ require this library.

‘vxoprs’ This is the default VxWorks OPRS Kernel. It requires ‘c toolkit.o’
and ‘vx-mp-lib.o’ to be loaded on the same board. The entry point is
oprs main (see below).

‘vxoprs-relocatable’ This is the default VxWorks OPRS Kernel minus the
entry points to allow the user to link its own code. It requires ‘c toolkit.o’
and ‘vx-mp-lib.o’ to be loaded on the same board. The entry point is
oprs main (see below). See [Linking C Code in the Kernels], §21.11, page
263 for more on this.

301

302 APPENDIX D. HARDWARE AND SOFTWARE DEPENDANCIES

‘vx-mp-oprs’ This is the VxWorks Message Passer program. It requires ‘c toolkit.o’
to be loaded on the same card. The entry point is mp oprs main (see be-
low).

‘vx-kill-mp’ This is the VxWorks kill-mp program. It requires ‘vx-mp-lib.o’
to be loaded on the same card. The entry point is kill mp main (see
below).

In VxWorks, there is no main in the code. The OPRS main function has
therefore been renamed and is called oprs main and has the following prototype:

int oprs_main(char *name_arg, char *server_hostname_arg,

int server_port_arg, char *mp_hostname_arg,

int mp_port_arg, char *include_filename_arg)

The arguments are explained below:

name arg is the name of the OPRS Kernel.

server hostname arg is the hostname on which the OPRS-Server is running.

server port arg is the port on which the OPRS-Server is listenning. If 0, no
connection is made to the OPRS-Server.

mp hostname arg is the hostname on which the Message Passer is running.

mp port arg is the port on which the Message Passer is listenning. If 0, then
no connection is made to the Message Passer.

include filename arg is an include file name to load upon starting. If NULL,
or empty string no file is loaded.

The OPRS Kernel cannot be run more than once on the same board (Vx-
Works processes share the same symbol space). However, the ‘vx-mp-lib.o’ li-
brary is shareable. More than one program can use it on the same board. The
proper variables have been put in VxWorks taskVar.

Most environment variables are ignored under VxWorks, except for the
OPRS DATA PATH variable.

The Message Passer main function has been renamed and is called mp oprs main

and has the following prototype:

int mp_oprs_main(int mp_port_arg, int verbose_arg, char *mp_log_filename_arg,

int exclude_arg)

The arguments are explained below:

mp port arg is the port on which the Message Passer is listenning.

verbose arg is the flag which says if yes or no the Message Passer should be
verbose on the messages exchanged.

D.2. C++ RELOCATABLES 303

mp log filename arg is file to which Message Passer will log the messages ex-
changed (if NULL or an empty string is given, no log are done).

exclude arg is the exclude flag which says if the Message Passer should, upon
a newer registration, disconnect the former client with the same name.

The kill-mp main function has been renamed and is called kill mp main

and has the following prototype:

int kill_mp_main(int mp_port_arg)

The argument is explained below:

mp port arg is the port on which the Message Passer you want to kill is listen-
ning.

Note that all OPRS Kernel should be started (using taskSpawn) with the
VX FP TASK set. Some operations on floating point in the kernel require to have
this option set up, as to enable the process context switch to save the FPU
registers.

When properly exiting, the OPRS Kernel and the other OPRS Development
Environment program return the memory allocated. However, this memory
does not show as freed in the standard memShow, as OPRS Kernel uses its own
allocation mechanism and will keep its memory allocated for future use. Use the
show memory command of the OPRS Kernel (see [OPRS Kernel Miscellaneous
Commands], §2.13, page 42) to see what it keeps for its own use.

D.2 C++ Relocatables

The relocatables are given in two format, the standard relocatable, and one
which can be linked to some C++ functions, in which case the main is not defined
to allow a C++ main to be used (the C++ main performs some initialization
required by C++ functions). The main is then named:

int oprs_main(int argc, char **argv, char ** envp);

D.3 SparcStation

There exist a multi-thread version of the OPRS-Server available under Solaris
2.4 which do auto accepting of new OPRS Kernel clients.

D.4 Windows95-NT

Under Windows 95... The Term Type symbol FLOAT and ATOM are already de-
fined. Therefore they are renamed TT FLOAT and TT ATOM.

The various program are statically linked.

304 APPENDIX D. HARDWARE AND SOFTWARE DEPENDANCIES

Due to the lack of signal timer under Windows, the conditions echanism is
currently more CPU consuming than under Unix.

Only the non graphical program have been ported.

Appendix E

Commands Equivalence
between the OPRS Kernel
and the X-OPRS Kernel

Most commands are available in both kernel (the X-OPRS Kernel and the CPK).
The following tables will allow the user to find out which command correspond
to which menu and vice verca. Note that some commands are not available in
both interface. This is the case for most declaration commands (declare be,
declare ff, etc.) which one usually put in an include file. In any case, you
can always transmit a command from the OPRS-Server (providing the kernel
has been properly connected to the OPRS-Server upon startup).

305

306APPENDIX E. COMMANDS EQUIVALENCE BETWEEN THEOPRS KERNEL AND THE X-OPRS KERNEL

Command Name Section Menu Item Section
add goal|fact 2.13 Add Fact or Goal 13.3.2
conclude expression 2.2 None
consult gexpression 2.2 Consult Fact Database 13.3.3
consult applicable op goal|fact 2.3 Consult Applicable OP 13.3.3
consult relevant op goal|fact 2.3 Consult Relevant OP 13.3.3
declare be predicate 2.9 None
declare cwp predicate 2.9 None
declare ff predicate integer 2.9 None
declare function function 2.9 None
declare id symbol 2.13 None
declare op predicate predicate 2.9 None
declare predicate predicate 2.9 None
delete expression 2.2 None
delete op op name 2.3 Delete a particular OP 13.3.2
delete opf file name 2.3 Unload OP File... 13.3.1
disconnect 2.13 None
echo (g|gt|gm)expression 2.13 None
empty fact db 2.2 Empty Fact Database 13.3.2
empty op db 2.4 Empty OP Library 13.3.2
help|h|? 2.13 Help 13.3.7
include file name 2.4 Include... 13.3.1

Table E.1: Commands Equivalence Between the Kernels (First Part)

307

Command Name Section Menu Item Section
list action 2.10 List Action 13.3.3
list all 2.10 List All 13.3.3
list be 2.10 List Basic Event Predicate 13.3.3
list cwp 2.10 List Closed World Predicate 13.3.3
list evaluable function 2.10 List Evaluable Function 13.3.3
list evaluable predicate 2.10 List Evaluable Predicate 13.3.3
list ff 2.10 List Functional Fact Predicate 13.3.3
list function 2.10 List Function 13.3.3
list op predicate 2.10 List OP Predicate 13.3.3
list opfs 2.3 List Loaded OP Files 13.3.1
list op 2.3 List Loaded OPs 13.3.3
list predicate 2.10 List Predicate 13.3.3
load db ‘file name’ 2.2 Load Database... 13.3.1
load opf op graph|file name 2.4 Load OP File... 16.1.1
q|quit|exit|EOF 2.13 Quit 13.3.1
reload opf ‘file name’ 2.4 Reload OP File... 13.3.1
require file name 2.4 None
reset kernel 2.13 Reset 13.4.2
save db ‘file name’ 2.2 Save Database... 13.3.1
send name message 2.13 None
set action on|off 2.8 Compiler Check Action 13.3.5
set eval post on|off 2.6 Eval On Post 13.3.5
set function on|off 2.8 Compiler Check Function 13.3.5
set meta fact op on|off 2.7 Post Meta Fact: (APPLICABLE-OPS-FACT ...) 13.3.5
set meta fact on|off 2.7 Post Meta Fact: (FACT-INVOKED-OPS ...) 13.3.5
set meta goal op on|off 2.7 Post Meta Fact: (APPLICABLE-OPS-GOAL ...) 13.3.5
set meta goal on|off 2.7 Post Meta Fact: (GOAL-INVOKED-OPS ...) 13.3.5
set meta on|off 2.7 Meta Level 13.3.5
set parallel intend on|off 2.6 Parallel Intend 13.3.5
set parallel intention on|off 2.6 Parallel Intention Execution 13.3.5
set parallel post on|off 2.6 Parallel Goal Posting 13.3.5
set predicate on|off 2.8 Compiler Check Predicate 13.3.5
set soak on|off 2.7 Post Meta Fact: (SOAK ...) 13.3.5
set symbol on|off 2.8 Compiler Check Symbol 13.3.5
set time stamping on|off 2.6 Time Stamping 13.3.5
show copyright 2.13 None
show db 2.2 Show Database 13.3.3
show variable 2.13 Show Global Variables 13.3.3
show intention 2.13 Show Intentions 13.3.3
show memory 2.13 Show Memory Usage 13.3.3
show op op name 2.3 Display a Particular OP 13.3.6
show version 2.13 None
stat all 2.13 Stat All Hashtables 13.3.3
stat db 2.13 Stat Database Hashtables 13.3.3
stat id 2.13 Stat Symbol Hashtable 13.3.3

Table E.2: Commands Equivalence Between the Kernels (Second Part)

308APPENDIX E. COMMANDS EQUIVALENCE BETWEEN THEOPRS KERNEL AND THE X-OPRS KERNEL

Command Name Section Menu Item Section
trace all on|off 2.5 None
trace applicable op on|off 2.5 Soak 13.3.4
trace db frame on|off 2.5 Database Frames 13.3.4
trace db on|off 2.5 Database operations 13.3.4
trace fact on|off 2.5 Fact Posting 13.3.4
trace feature on|off 2.5 Trace 13.3.4
trace goal on|off 2.5 Goal Posting 13.3.4
trace graphic on|off 2.5 OP Graphic 13.3.4
trace graphic op op name on|off 2.3 OP Trace/Step... 13.3.4
trace graphic opf file name on|off 2.3 None
trace intend on|off 2.5 Intention 13.3.4
trace load op on|off 2.5 OP Compiler 13.3.4
trace receive on|off 2.5 Message Reception 13.3.4
trace relevant op on|off 2.5 Relevant OP 13.3.4
trace send on|off 2.5 Message Sent 13.3.4
trace suc fail on|off 2.5 OP Success Failure 13.3.4
trace intention failure on|off 2.5 Intention Failure 13.3.4
trace text on|off 2.5 OP Text 13.3.4
trace text op op name on|off 2.3 OP Text Trace... 13.3.4
trace text opf file name on|off 2.3 None
trace thread on|off 2.5 Thread Forking/Joining 13.3.4
undeclare be predicate 2.9 None
unify expression expression 2.13 None

Table E.3: Commands Equivalence Between the Kernels (Third Part)

Appendix F

Default OPs

Some default OPs are provided as is in the standard OPRS distribution. How-
ever, unlike SRI PRS, these default OPs are not loaded by default in all OPRS
Kernels. Most of these files comes with a ‘.sym’ and ‘.inc’ companion. If this
is the case, always load the coresponding ‘.inc’ file.

F.1 ‘new-default.opf’

Here is the list of default procedures provided with the current revision of OPRS
Development Environment. They can be found in the file ‘new-default.opf ’.
Final user are encourage to make a copy of this file and select the OP they need
and they want to keep for their application.

• —Apply-Sort-Predicate-To-All—

A graphic action OP.

Invocation: (! (APPLY-SORT-PREDICATE-TO-ALL))

Call: (APPLY-SORT-PREDICATE-TO-ALL)

Context: ()

Effects: ()

Action: (APPLY-SORT-PREDICATE-TO-ALL)

Properties: ((DECISION-PROCEDURE T))

Documentation: This OP will apply the sort intentions function, to

all the intentions.

• —Asleep Intention Cond—

A graphic action OP.

Invocation: (! (ASLEEP-INTENTION-COND $X $COND))

309

310 APPENDIX F. DEFAULT OPS

Call: (ASLEEP-INTENTION-COND $X $COND)

Context: ()

Effects: ()

Action: (ASLEEP-INTENTION-COND $X $COND)

Documentation: This OP will asleep the intention in $x the LISP_CAR containing an

intention passed as argument.

It will add the gexpr built from the TermComp $COND

in the activation condition.

• —Asleep Intentions Cond—

A graphic action OP.

Invocation: (! (ASLEEP-INTENTIONS-COND $X $COND))

Call: (ASLEEP-INTENTIONS-COND $X $COND)

Context: ()

Effects: ()

Action: (ASLEEP-INTENTIONS-COND $X $COND)

Documentation: This OP will asleep all the intentions in $x the LISP_LIST

of intentions passed as argument.

It will add the gexpr built from the TermComp $COND

in the activation condition.

• —Asleep Intentions—

A graphic action OP.

Invocation: (! (ASLEEP-INTENTIONS $X $ID))

Call: (ASLEEP-INTENTIONS $X $ID)

Context: ()

Effects: ()

Action: (ASLEEP-INTENTIONS $X $ID)

Documentation: This OP will asleep all the intentions in $x the LISP_LIST of

intentions passed as argument.

It will add the fact (WAKE-UP-INTENTION $ID) in the activation condition.

• —Asleep Intention—

A graphic action OP.

Invocation: (! (ASLEEP-INTENTION $X $ID))

Call: (ASLEEP-INTENTION $X $ID)

Context: ()

Effects: ()

F.1. ‘NEW-DEFAULT.OPF’ 311

Action: (ASLEEP-INTENTION $X $ID)

Documentation: This OP will asleep the intention in $x the LISP_CAR containing an

intention passed as argument.

It will add the fact (WAKE-UP-INTENTION $ID) in the activation condition.

• —Broadcast Message—

A graphic action OP.

Invocation: (! (BROADCAST-MESSAGE $MESSAGE))

Call: (BROADCAST-MESSAGE $MESSAGE)

Context: ()

Effects: ()

Action: (BROADCAST-MESSAGE $MESSAGE)

Documentation: Send the message $MESSAGE to all the agents

registered to the message passer, except the sender.

• —Delete Window—

A graphic action OP.

Invocation: (! (DELETE-WINDOW $w))

Call: (DELETE-WINDOW $w)

Context: ()

Effects: ()

Action: (DELETE-WINDOW $w)

Documentation: This OP delete an existing window

• —End Critical Section—

A graphic action OP.

Invocation: (! (END-CRITICAL-SECTION))

Call: (END-CRITICAL-SECTION)

Context: ()

Effects: ()

Action: (END-CRITICAL-SECTION)

Documentation: This OP will quit the critical section of the current intention.

• —Execute Command—

A graphic action OP.

Invocation: (! (EXECUTE-COMMAND $COMMAND))

Call: (EXECUTE-COMMAND $COMMAND)

312 APPENDIX F. DEFAULT OPS

Context: ()

Effects: ()

Action: (EXECUTE-COMMAND $COMMAND)

Documentation: This OP execute the command given as argument.

• —Tcl Command—

A graphic action OP.

Invocation: (! (TCL-COMMAND $COMMAND))

Call: (TCL-COMMAND $COMMAND)

Context: ()

Effects: ()

Action: (TCL-COMMAND $COMMAND)

Documentation: This OP executes the tcl command given as argument.

• —Fail—

A graphic action OP.

Invocation: (! (FAILED))

Call: (FAILED)

Context: ()

Effects: ()

Action: (FAIL)

Documentation: This action will fail... This OP can be used to

fail the branch of a OP, for example

• —Get All Intentions—

A graphic action OP.

Invocation: (! (GET-ALL-INTENTIONS $LI))

Call: (GET-ALL-INTENTIONS $LI)

Context: ()

Effects: ()

Action: (*=* $LI(GET-ALL-INTENTIONS))

Documentation: This OP will return the LISP-LIST of

all the intentions.

• —Get Current Intention—

A graphic action OP.

F.1. ‘NEW-DEFAULT.OPF’ 313

Invocation: (! (GET-CURRENT-INTENTION $CI))

Call: (GET-CURRENT-INTENTION $CI)

Context: ()

Effects: ()

Action: (*=* $CI(GET-CURRENT-INTENTION))

Documentation: This OP will return the current

intention in the LISP_CAR $CI .

• —Get Float Array—

A graphic action OP.

Invocation: (! (GET-FLOAT-ARRAY $ARRAY $INDEX $VALUE))

Call: (GET-FLOAT-ARRAY $ARRAY $INDEX $VALUE)

Context: ()

Effects: ()

Action: (*=* $VALUE(GET-FLOAT-ARRAY $ARRAY $INDEX))

Documentation: This OP get the $VALUE contained in the float (double) array

$ARRAY at indice $INDEX.

• —Get Int Array—

A graphic action OP.

Invocation: (! (GET-INT-ARRAY $ARRAY $INDEX $VALUE))

Call: (GET-INT-ARRAY $ARRAY $INDEX $VALUE)

Context: ()

Effects: ()

Action: (*=* $VALUE(GET-INT-ARRAY $ARRAY $INDEX))

Documentation: This OP get the $VALUE contained in the int array

$ARRAY at indice $INDEX.

• —Get Intention Priority—

A graphic action OP.

Invocation: (! (GET-INTENTION-PRIORITY $I $P))

Call: (GET-INTENTION-PRIORITY $I $P)

Context: ()

Effects: ()

Action: (*=* $P(GET-INTENTION-PRIORITY $I))

Documentation: This OP will return the Priority of the

intention in the LISP_CAR $I .

314 APPENDIX F. DEFAULT OPS

• —Get Intention Time—

A graphic action OP.

Invocation: (! (GET-INTENTION-TIME $I $T))

Call: (GET-INTENTION-TIME $I $T)

Context: ()

Effects: ()

Action: (*=* $T(GET-INTENTION-TIME $I))

Documentation: This OP will return the Time (Date of Creation in sec)

of the intention in the LISP_CAR $I .

• —Get Other Intentions—

A graphic action OP.

Invocation: (! (GET-OTHER-INTENTIONS $LI))

Call: (GET-OTHER-INTENTIONS $LI)

Context: ()

Effects: ()

Action: (*=* $LI(GET-OTHER-INTENTIONS))

Documentation: This OP will return the LISP-LIST of

the other intentions.

• —Get Root Intentions—

A graphic action OP.

Invocation: (! (GET-ROOT-INTENTIONS $LI))

Call: (GET-ROOT-INTENTIONS $LI)

Context: ()

Effects: ()

Action: (*=* $LI(GET-ROOT-INTENTIONS))

Documentation: This OP will return the LISP-LIST of

the root intentions.

• —Get Sleeping Intentions—

A graphic action OP.

Invocation: (! (GET-SLEEPING-INTENTIONS $LI))

Call: (GET-SLEEPING-INTENTIONS $LI)

Context: ()

Effects: ()

F.1. ‘NEW-DEFAULT.OPF’ 315

Action: (*=* $LI(GET-SLEEPING-INTENTIONS))

Documentation: This OP will return the LISP-LIST of

the sleeping intentions.

• —Kill Intentions—

A graphic action OP.

Invocation: (! (KILL-INTENTIONS $X))

Call: (KILL-INTENTIONS $X)

Context: ()

Effects: ()

Action: (KILL-INTENTIONS $X)

Documentation: This OP will kill all the intentions in $x the LISP_LIST of

intentions passed as argument.

• —Kill Intention—

A graphic action OP.

Invocation: (! (KILL-INTENTION $X))

Call: (KILL-INTENTION $X)

Context: ()

Effects: ()

Action: (KILL-INTENTION $X)

Documentation: This OP will kill the intention in $x the LISP_CAR containing an

intentions passed as argument.

• —Kill other intentions—

A graphic action OP.

Invocation: (! (KILL-OTHER-INTENTIONS))

Call: (KILL-OTHER-INTENTIONS)

Context: ()

Effects: ()

Action: (KILL-OTHER-INTENTIONS)

Documentation: This OP will kill all the other intentions in the intention graph.

(it is a very dangerous action OP). Note that it does not

kill itself.

• —Make Float Array—

A graphic action OP.

316 APPENDIX F. DEFAULT OPS

Invocation: (! (MAKE-FLOAT-ARRAY $SIZE $ARRAY))

Call: (MAKE-FLOAT-ARRAY $SIZE $ARRAY)

Context: ()

Effects: ()

Action: (*=* $ARRAY(MAKE-FLOAT-ARRAY $SIZE))

Documentation: This OP create a float (in fact double) array of size $SIZE and return

the value in $ARRAY.

• —Make Int Array—

A graphic action OP.

Invocation: (! (MAKE-INT-ARRAY $SIZE $ARRAY))

Call: (MAKE-INT-ARRAY $SIZE $ARRAY)

Context: ()

Effects: ()

Action: (*=* $ARRAY(MAKE-INT-ARRAY $SIZE))

Documentation: This OP create an int array of size $SIZE and return

the value in $ARRAY.

• —Manage Window—

A graphic action OP.

Invocation: (! (MANAGE-WINDOW $w))

Call: (MANAGE-WINDOW $w)

Context: ()

Effects: ()

Action: (MANAGE-WINDOW $w)

Documentation: This OP manage an existing window

• —Meta Intend After—

A graphic action OP.

Invocation: (! (INTENDED-OP-AFTER $X $INTENDED-LIST))

Call: (INTENDED-OP-AFTER $X $INTENDED-LIST)

Context: ()

Effects: ()

Action: (INTEND-OP-AFTER $X $INTENDED-LIST)

Documentation: To intend an applicable OP ($X a Op Instance LISP_CAR),

after a list of already intended procedure.

F.1. ‘NEW-DEFAULT.OPF’ 317

• —Meta Intend All OPs As Root—

A graphic action OP.

Invocation: (! (INTENDED-ALL-OPS-AS-ROOT $X))

Call: (INTENDED-ALL-OPS-AS-ROOT $X)

Context: ()

Effects: ()

Action: (INTEND-ALL-OPS-AS-ROOT $X)

Documentation: Intend all the OPs in $X (a LISP_LIST of OP Instance)

as roots of the intention graph.

• —Meta Intend All OPs—

A graphic action OP.

Invocation: (! (INTENDED-ALL-OPS $X))

Call: (INTENDED-ALL-OPS $X)

Context: ()

Effects: ()

Action: (INTEND-ALL-OPS $X)

Documentation: Intend all the OPs in the $x (a LISP_LIST of OP Instance) list.

• —Meta Intend All Ops After—

A graphic action OP.

Invocation: (! (INTENDED-ALL-OPS-AFTER $X $INTENDED-LIST))

Call: (INTENDED-ALL-OPS-AFTER $X $INTENDED-LIST)

Context: ()

Effects: ()

Action: (INTEND-ALL-OPS-AFTER $X $INTENDED-LIST)

Documentation: To intend all the OPs in $X (a LISP_LIST of Op Instances),

after a list of already intended procedure.

• —Meta Intend with Priority After—

A graphic action OP.

Invocation: (! (INTENDED-OP-WITH-PRIORITY-AFTER $X $P $INTENDED-LIST))

Call: (INTENDED-OP-WITH-PRIORITY-AFTER $X $P $INTENDED-LIST)

Context: ()

Effects: ()

Action: (INTEND-OP-WITH-PRIORITY-AFTER $X $P $INTENDED-LIST)

318 APPENDIX F. DEFAULT OPS

Documentation: To intend an applicable OP ($X a Op Instance LISP_CAR)

based upon PRIORITY ($P a Term Integer LISP_CAR), after

a list of already intended procedure.

• —Meta Intend with Priority—

A graphic action OP.

Invocation: (! (INTENDED-OP-WITH-PRIORITY $X $P))

Call: (INTENDED-OP-WITH-PRIORITY $X $P)

Context: ()

Effects: ()

Action: (INTEND-OP-WITH-PRIORITY $X $P)

Documentation: The simplest way to intend an applicable OP ($X a Op Instance LISP_CAR)

based upon PRIORITY ($P a Term Integer LISP_CAR).

• —Meta Intend—

A graphic action OP.

Invocation: (! (INTENDED-OP $X))

Call: (INTENDED-OP $X)

Context: ()

Effects: ()

Action: (INTEND-OP $X)

Documentation: The simplest way to intend an applicable OP

($X a Op Instance LISP_CAR).

• —Multicast Message—

A graphic action OP.

Invocation: (! (MULTICAST-MESSAGE $AGENTS $MESSAGE))

Call: (MULTICAST-MESSAGE $AGENTS $MESSAGE)

Context: ()

Effects: ()

Action: (MULTICAST-MESSAGE $AGENTS $MESSAGE)

Documentation: Multicast the message $MESSAGE to the oprs in the $AGENTS lisp list.

• —Print (just print an object)—

A graphic action OP.

Invocation: (! (PRINT $X))

Call: (PRINT $X)

F.1. ‘NEW-DEFAULT.OPF’ 319

Context: ()

Effects: ()

Action: (PRINT $X)

Documentation: Print the value of $x in the Text Pane

• —Print C Format—

A graphic action OP.

Invocation: (! (PRINTF $X))

Call: (PRINTF $X)

Context: ()

Effects: ()

Action: (PRINTF $X)

Documentation: This OP prints a (format) statement.

It accepts some of the % C directives (%d %s %f %g %%).

Example : (printf (format "The %d of %s is %f." $x $y $z))

• —Print List (Format like printing)—

A graphic action OP.

Invocation: (! (PRINT-LIST $X))

Call: (PRINT-LIST $X)

Context: ()

Effects: ()

Action: (PRINT-INSIDE $X)

Documentation: This OP prints a (format nil) statement. This is a

remanence of the LISP version of OPRS. It does not accept

all the ~ directives, but accepts some of the % C directives.

• —Print Window C Format—

A graphic action OP.

Invocation: (! (PRINTF-WINDOW $w $X))

Call: (PRINTF-WINDOW $w $X)

Context: ()

Effects: ()

Action: (PRINTF-WINDOW $W $X)

Documentation: This OP prints a (format) statement in an existing window (under X only).

It accepts some of the % C directives (%d %s %f %g %%).

Example : (printf 0x12345 (format "The %d of %s is %f." $x $y $z))

320 APPENDIX F. DEFAULT OPS

• —Print-Log-End—

A text action OP.

Invocation: (! (LOG-END $X))

Context: ()

Effects: ()

Action: (*=* $RES(LOG-END $X))

• —Print-Log-Init—

A text action OP.

Invocation: (! (LOG-INIT $X $Y))

Context: ()

Effects: ()

Action: (*=* $RES(LOG-INIT $X $Y))

• —Print-Log-Print—

A text action OP.

Invocation: (! (LOG-PRINTF $X $Y))

Context: ()

Effects: ()

Action: (*=* $RES(LOG-PRINTF $X $Y))

• —Read Inside Id Var—

A graphic action OP.

Invocation: (! (READ-INSIDE-ID-VAR $X $VAL))

Call: (READ-INSIDE-ID-VAR $X $VAL)

Context: ()

Effects: ()

Action: (READ-INSIDE-ID-VAR $X $VAL)

Documentation: This OP will asleep the current intention

until we got the fact (READ-RESPONSE $X $VAL).

• —Read Inside Id—

A graphic action OP.

Invocation: (! (READ-INSIDE-ID $X $VAL))

Call: (READ-INSIDE-ID $X $VAL)

Context: ()

F.1. ‘NEW-DEFAULT.OPF’ 321

Effects: ()

Action: (*=* $VAL(READ-INSIDE-ID $X))

Documentation: This OP will asleep the current intention

until we got the fact (READ-RESPONSE $X $VAL).

• —Read Inside—

A graphic action OP.

Invocation: (! (READ-INSIDE $VAL))

Call: (READ-INSIDE $VAL)

Context: ()

Effects: ()

Action: (*=* $VAL(READ-INSIDE))

Documentation: This OP will asleep the current intention

until we got the fact (READ-RESPONSE $VAL).

• —Rename Window—

A graphic action OP.

Invocation: (! (RENAME-WINDOW $w $t))

Call: (RENAME-WINDOW $w $t)

Context: ()

Effects: ()

Action: (RENAME-WINDOW $w $t)

Documentation: This OP rename an existing window

• —Send Message—

A graphic action OP.

Invocation: (! (SEND-MESSAGE $OPRS $MESSAGE))

Call: (SEND-MESSAGE $OPRS $MESSAGE)

Context: ()

Effects: ()

Action: (SEND-MESSAGE $OPRS $MESSAGE)

Documentation: Send the message $MESSAGE to the oprs $OPRS agent.

• —Send String—

A graphic action OP.

Invocation: (! (SEND-STRING $AGENT $STRING))

322 APPENDIX F. DEFAULT OPS

Call: (SEND-STRING $AGENT $STRING)

Context: ()

Effects: ()

Action: (SEND-STRING $AGENT $STRING)

Documentation: Send the string $STRING to the $AGENT.

• —Set Float Array—

A graphic action OP.

Invocation: (! (SET-FLOAT-ARRAY $ARRAY $INDEX $VALUE))

Call: (SET-FLOAT-ARRAY $ARRAY $INDEX $VALUE)

Context: ()

Effects: ()

Action: (SET-FLOAT-ARRAY $ARRAY $INDEX $VALUE)

Documentation: This OP set the $VALUE contained in the float array

$ARRAY at indice $INDEX.

• —Set Int Array—

A graphic action OP.

Invocation: (! (SET-INT-ARRAY $ARRAY $INDEX $VALUE))

Call: (SET-INT-ARRAY $ARRAY $INDEX $VALUE)

Context: ()

Effects: ()

Action: (SET-INT-ARRAY $ARRAY $INDEX $VALUE)

Documentation: This OP set the $VALUE contained in the int array

$ARRAY at indice $INDEX.

• —Set Intention Priority—

A graphic action OP.

Invocation: (! (SET-INTENTION-PRIORITY $I $P))

Call: (SET-INTENTION-PRIORITY $I $P)

Context: ()

Effects: ()

Action: (SET-INTENTION-PRIORITY $I $P)

Documentation: This OP will set the Priority $P to the

intention in the LISP_CAR $I .

• —Sort Intention None—

A graphic action OP.

F.1. ‘NEW-DEFAULT.OPF’ 323

Invocation: (! (SORT-INTENTION-NONE))

Call: (SORT-INTENTION-NONE)

Context: ()

Effects: ()

Action: (SORT-INTENTION-NONE)

Properties: ((DECISION-PROCEDURE T))

Documentation: This OP will unset the sort intentions function.

• —Sort Intention Priority Time—

A graphic action OP.

Invocation: (! (SORT-INTENTION-PRIORITY-TIME))

Call: (SORT-INTENTION-PRIORITY-TIME)

Context: ()

Effects: ()

Action: (SORT-INTENTION-PRIORITY-TIME)

Properties: ((DECISION-PROCEDURE T))

Documentation: This OP will set the sort intentions function

to Priority then Time.

• —Sort Intention Priority—

A graphic action OP.

Invocation: (! (SORT-INTENTION-PRIORITY))

Call: (SORT-INTENTION-PRIORITY)

Context: ()

Effects: ()

Action: (SORT-INTENTION-PRIORITY)

Properties: ((DECISION-PROCEDURE T))

Documentation: This OP will set the sort intentions function

to Priority.

• —Sort Intention Time—

A graphic action OP.

Invocation: (! (SORT-INTENTION-TIME))

Call: (SORT-INTENTION-TIME)

Context: ()

Effects: ()

324 APPENDIX F. DEFAULT OPS

Action: (SORT-INTENTION-TIME)

Properties: ((DECISION-PROCEDURE T))

Documentation: This OP will set the sort intentions function

to Time.

• —Start Critical Section—

A graphic action OP.

Invocation: (! (START-CRITICAL-SECTION))

Call: (START-CRITICAL-SECTION)

Context: ()

Effects: ()

Action: (START-CRITICAL-SECTION)

Documentation: This OP will put the current intention in a critical section.

• —Succeed—

A graphic action OP.

Invocation: (! (SUCCEED))

Call: (SUCCEED)

Context: ()

Effects: ()

Action: (SUCCEED)

Documentation: This action will succeed... This OP can be used to

make a branch which always succeeds

• —Tag Current Intention—

A graphic action OP.

Invocation: (! (TAG-CURRENT-INTENTION $X))

Call: (TAG-CURRENT-INTENTION $X)

Context: ()

Effects: ()

Action: (TAG-CURRENT-INTENTION $X)

Documentation: This OP when executed will tag the current intention, i.e. the

intention in which it is executed with the ID $X passed in argument.

• —Unmanage Window—

A graphic action OP.

Invocation: (! (UNMANAGE-WINDOW $w))

F.2. ‘META-INTENDED-GOAL.OPF’ 325

Call: (UNMANAGE-WINDOW $w)

Context: ()

Effects: ()

Action: (UNMANAGE-WINDOW $w)

Documentation: This OP unmanage an existing window

• —Wake-Up Intention—

A graphic action OP.

Invocation: (! (WAKE-UP-INTENTION $ID))

Call: (WAKE-UP-INTENTION $ID)

Context: ()

Effects: ()

Action: (WAKE-UP-INTENTION $ID)

Documentation: This OP will wake-up all the intentions

asleep with this ID .

F.2 ‘meta-intended-goal.opf’

Here is the list of meta OP to intend a goal directly distributed with the current
revision of OPRS Development Environment. They can be found in the file
‘meta-intended-goal.opf’.

• —// Apply to all after Roots—

A graphic OP.

Invocation: (! (//-APPLY-TO-ALL-AFTER-ROOTS (LAMBDA $VAR $GTEXPR) $LIST))

Documentation: Apply the same goal to a LISP_LIST list of variables.

Note the construction of the goal-list LISP_LIST.

It is a kind of MAP-OP.

• —// Apply to all as roots with priority—

A graphic OP.

Invocation: (! (//-APPLY-TO-ALL-AS-ROOTS-WITH-PRIORITY (LAMBDA $VAR $GTEXPR) $LIST $L-PR))

Documentation: Apply the same goal to a LISP_LIST list of variable and a LISP_LIST of priority.

Note the construction of the goal-list.

It is a kind of MAP-OP.

• —Apply to all (already built goals)—

A graphic OP.

326 APPENDIX F. DEFAULT OPS

Invocation: (! (INTENDED-ALL $GOAL-LIST))

Documentation: Post the goal separately.

• —Apply to all as roots—

A graphic OP.

Invocation: (! (APPLY-TO-ALL-AS-ROOTS (LAMBDA $VAR $GTEXPR) $LIST))

Documentation: Apply the same goal to a LISP_LIST list of variables,

and intend its as root (before all intentions).

• —Apply to all before me—

A graphic OP.

Invocation: (! (APPLY-TO-ALL-BEFORE-ME (LAMBDA $VAR $GTEXPR) $LIST))

Documentation: Apply the same goal to a LISP_LIST list of variables,

and intend its as root (before the current intention).

• —Apply to all before other—

A graphic OP.

Invocation: (! (APPLY-TO-ALL-BEFORE-OTHER (LAMBDA $VAR $GTEXPR) $LIST))

Documentation: Apply the same goal to a LISP_LIST list of variables,

and intend its as root (before all intentions).

• —Apply to all with priority—

A graphic OP.

Invocation: (! (APPLY-TO-ALL-WITH-PRIORITY (LAMBDA $VAR $GTEXPR) $LIST $PRIOR))

Documentation: Apply the same goal to a LISP_LIST list of variables,

and intend its respectively with the priority in $PRIOR.

• —Apply to all—

A graphic OP.

Invocation: (! (APPLY-TO-ALL (LAMBDA $VAR $GTEXPR) $LIST))

Documentation: Apply the same goal to a LISP_LIST list of variables.

• —Build goal list without var—

A graphic OP.

Invocation: (! (BUILD-GOAL-LIST-NO-VAR $LIST-GTEXPR $LIST-GOAL))

Documentation: Build a Goal List using a LISP_LIST list of gtexpr.

F.2. ‘META-INTENDED-GOAL.OPF’ 327

• —Build goal list—

A graphic OP.

Invocation: (! (BUILD-GOAL-LIST (LAMBDA $VAR $GTEXPR) $LIST-VAR $LIST-GOAL))

Documentation: Build a Goal List using the same goal to

a LISP_LIST list of variables.

• —Meta-Intend all goals // after Roots—

A graphic action OP.

Invocation: (! (INTENDED-ALL-GOALS-//-AFTER-ROOTS $X))

Action: (INTEND-ALL-GOALS-//-AFTER-ROOTS $X)

Documentation: Intend all the Goals in $X (a Goal LISP_LIST)

after all the roots of the intention graph.

• —Meta-Intend all goals // after—

A graphic action OP.

Invocation: (! (INTENDED-ALL-GOALS-//-AFTER $X $AFTER))

Action: (INTEND-ALL-GOALS-//-AFTER $X $AFTER)

Documentation: Intend all the Goals in $X (a Goal LISP_LIST)

after all the intentions in $after.

• —Meta-Intend all goals // as Roots with priority—

A graphic action OP.

Invocation: (! (INTENDED-ALL-GOALS-//-AS-ROOTS-WITH-PRIORITY $X $P))

Action: (INTEND-ALL-GOALS-//-AS-ROOTS-WITH-PRIORITY $X $P)

Documentation: Intend all the Goals in $X (a LISP_LIST of Goal) with

the priority in $P (a LISP_LIST of integer priority)

as roots of the intention graph.

• —Meta-Intend all goals // as roots—

A graphic action OP.

Invocation: (! (INTENDED-ALL-GOALS-//-AS-ROOTS $X))

Action: (INTEND-ALL-GOALS-//-AS-ROOTS $X)

Documentation: Intend all the Goals in $X (a Goal LISP_LIST)

as roots of the intention graph.

• —Meta-Intend all goals //—

A graphic action OP.

328 APPENDIX F. DEFAULT OPS

Invocation: (! (INTENDED-ALL-GOALS-// $X))

Action: (INTEND-ALL-GOALS-// $X)

Documentation: Intend all the Goals in $X (a Goal LISP_LIST)

after the current intention.

• —Meta-Intend goal after before with priority—

A graphic action OP.

Invocation: (! (INTENDED-GOAL-WITH-PRIORITY-AFTER-BEFORE $X $P $AFTER $BEFORE))

Action: (INTEND-GOAL-WITH-PRIORITY-AFTER-BEFORE $X $P $AFTER $BEFORE)

Documentation: Intend the Goal in $X (a LISP_CAR Goal)

with the priority $P, after all the intentions

in $AFTER, and before all in $BEFORE.

• —Meta-Intend goal after before—

A graphic action OP.

Invocation: (! (INTENDED-GOAL-AFTER-BEFORE $X $AFTER $BEFORE))

Action: (INTEND-GOAL-AFTER-BEFORE $X $AFTER $BEFORE)

Documentation: Intend the Goal in $X (a LISP_CAR Goal)

after all the intentions in $AFTER, and before all in $BEFORE.

• —Meta-Intend goal with priority—

A graphic action OP.

Invocation: (! (INTENDED-GOAL-WITH-PRIORITY $X $P))

Action: (INTEND-GOAL-WITH-PRIORITY $X $P)

Documentation: Intend the Goal in $X (a LISP_CAR Goal)

with the priority $P, after the current intention.

• —Meta-Intend goal—

A graphic action OP.

Invocation: (! (INTENDED-GOAL $X))

Action: (INTEND-GOAL $X)

Documentation: Intend the Goal in $X (a LISP_CAR Goal),

after the current intention.

F.3. ‘NEW-META-OPS.OPF’ 329

F.3 ‘new-meta-ops.opf’

Here is the list of meta procedures provided with the current revision of OPRS
Development Environment. They can be found in the file ‘new-meta-ops.opf’.

‘This file contains more than on meta level OP, do not load all of
them at the same time in one application, you would get a very weird
behavior. Just pick up the one which seems to be appropriate to your
application.’

• —Called From Meta Selector With Priority—

A graphic OP.

Invocation: (! (META-INTENDED-ALL-WITH-PRIORITY $OPS-TO-INTEND $INTENDED-DECISION-PROCEDURES))

Effects: ()

Documentation: This meta OP will intend applicable

OPs based on their priority.

• —Meta Selector (facts preferred and ordered)—

A graphic OP.

Invocation: (SOAK $X)

Context: ((|| (> (LENGTH $X) 1) (& (EQUAL (LENGTH $X) 1) (IS-FACT-INVOKED (FIRST $X)) (NOT-AN-INSTANCE-OF-ME (FIRST $X)))))

Effects: ()

Properties: ((DECISION-PROCEDURE T))

Documentation: This Meta OP is used whenever there are one or more than

one OP applicable. If there are fact invoked OPs, they

are all intended (and the goal invoked OPs are discarded), otherwise

it will randomly choose one of the goal invoked OPs.

It intends the fact-invoked-ops which are decision-procedure

as root of the graph, and the other ones after the already

intended op-instance which are decision procedure.

• —Meta Selector (facts preferred)—

A graphic OP.

Invocation: (SOAK $X)

Context: ((> (LENGTH $X) 1))

Effects: ()

Properties: ((DECISION-PROCEDURE T))

Documentation: This Meta OP is used whenever there are more than one OP applicable.

If there are fact invoked OPs, they are all intended (and the goal

invoked OPs are discarded), otherwise it will randomly choose one of

the goal invoked OPs. As a result, the behavior of the kernel is

330 APPENDIX F. DEFAULT OPS

very reactive. Note that it can apply to itself without any problem

because this very Meta OP *is* fact invoked so will be intented by

its grand brother.

• —Meta Selector (only facts)—

A graphic OP.

Invocation: (FACT-INVOKED-OPS $F)

Context: ((|| (> (LENGTH $F) 1) (& (EQUAL (LENGTH $F) 1) (NOT-AN-INSTANCE-OF-ME (FIRST $F)))))

Effects: ()

Properties: ((DECISION-PROCEDURE T))

Documentation: This Meta OP is used whenever there are one or more than

one Fact Invoked OP applicable.

It intends the fact-invoked-ops which are decision-procedure

as root of the graph, and the other ones after the already

intended op-instance which are decision procedure.

• —Meta Selector With Priority—

A graphic OP.

Invocation: (FACT-INVOKED-OPS $FACT-INVOKED-OPS)

Context: ((|| (> (LENGTH $FACT-INVOKED-OPS) 1) (& (EQUAL (LENGTH $FACT-INVOKED-OPS) 1) (~ (PROPERTY-P META-SELECTOR-WITH-PRIORITY (FIRST $FACT-INVOKED-OPS))))))

Effects: ()

Properties: ((DECISION-PROCEDURE T) (META-SELECTOR-WITH-PRIORITY T))

Documentation: Meta OP used whenever there is more than

one fact invoked OP applicable.

F.4 ‘semaphore.opf’

Here is the list of procedures, provided with the current revision of OPRS Devel-
opment Environment, which implement semaphores. They can be found in the
file ‘semaphore.opf’. Make sure you do not load the ‘.opf ’ directly but include
the ‘semaphore.inc’ instead. Indeed, some important declaration are made in
the ‘semaphore.sym’ file which is loaded by the ‘semaphore.inc’ file.

This OP library provides two type of semaphores: SEM-BASIC semaphores
and SEM-FIFO semaphores. For both types, there is a give, a take and a take
with timeout OPs. See the OP documentation for more details.

• —Semaphore Create—

A graphic OP.

Invocation: (! (SEM-CREATE $SEM $NUM $TYPE))

F.4. ‘SEMAPHORE.OPF’ 331

Documentation: Create a semaphore called $SME

and intialize it with $NUM.

• —Semaphore FIFO Give—

A graphic OP.

Invocation: (! (SEM-V $SEM))

Context: ((SEMAPHORE-TYPE $SEM SEM-FIFO))

Documentation: This OP releases the semaphore $sem.

Note it checks it has it first.

• —Semaphore FIFO Take Timeout—

A graphic OP.

Invocation: (! (SEM-P-TIMEOUT $SEM $TIMEOUT))

Context: ((SEMAPHORE-TYPE $SEM SEM-FIFO))

Documentation: This OP will get the FIFO semaphore $SEM.

Note it waits at most $TIMEOUT to get it.

• —Semaphore FIFO Take—

A graphic OP.

Invocation: (! (SEM-P $SEM))

Context: ((SEMAPHORE-TYPE $SEM SEM-FIFO))

Documentation: This OP will get the FIFO semaphore $SEM.

Note it waits for ever to get it.

• —Semaphore Give—

A graphic OP.

Invocation: (! (SEM-V $SEM))

Context: ((SEMAPHORE-TYPE $SEM SEM-BASIC))

Documentation: This OP releases the semaphore $sem.

Note it checks it has it first.

• —Semaphore Reset—

A graphic OP.

Invocation: (! (SEM-RESET $SEM $NUM))

Documentation: Reset a semaphore called $SME

and intialize it with $NUM.

• —Semaphore Take Timeout—

A graphic OP.

332 APPENDIX F. DEFAULT OPS

Invocation: (! (SEM-P-TIMEOUT $SEM $TIMEOUT))

Context: ((SEMAPHORE-TYPE $SEM SEM-BASIC))

Documentation: This OP will get the semaphore $SEM.

It waits at most $TIMEOUT to get it.

• —Semaphore Take—

A graphic OP.

Invocation: (! (SEM-P $SEM))

Context: ((SEMAPHORE-TYPE $SEM SEM-BASIC))

Documentation: This OP will get the semaphore $SEM.

Note it waits for ever to get it.

Appendix G

Library and Kernel
Functions

Few libraries (currently two) come with OPRS Development Environment. All
of them are needed to write module to connect to the Message Passer. However,
to write your own kernel, i.e. to extend relocatable, you may need access to
functions defined in these relocatable (most likely to write evaluable functions,
evaluable predicates and actions). In this chapter, we shall describe the libraries
and the kernel functions which can or must be used by the user.

G.1 Kernel Functions

The oprs-relocatable and the xoprs-relocatable files contains already a
number of functions the user can use. Considering that these functions are
already present in the relocatable, there is no special action to use them (no
new file to link).

G.1.1 Data Structures and Types Used

Most data structures are hidden behind opaque pointers. Access functions are
provided when required. However, some structure definitions are given to the
end user.

Here is the definition of the Oprs Date structure:

#include <sys/time.h>

typedef struct timeval PDate;

Here is the definition of the Term structure:

/* Definition of the types used in a Term */

/* Under Windows 95... FLOAT and ATOM are already defined. Therefore

333

334 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

they are renamed TT_FLOAT and TT_ATOM */

typedef enum {INTEGER, FLOAT, STRING, ATOM, TERM_COMP, VARIABLE, GTEXPRESSION,

LEXPRESSION, LENV, LISP_LIST, INT_ARRAY, FLOAT_ARRAY, U_POINTER} Term_Type;

/* Definition of a composed Term. For example in (P a (f g h) c), (f g h) is a

* composed term. */

typedef struct term_comp {

Function function;

int n_arg;

TermList terms;

} Term_Comp;

/* Definition of a term (a typed union) */

typedef struct term Term;

struct term {

Term_Type type;

union {

int intval;

double doubleval;

char *string;

char *id;

Term_Comp *term;

Gtexpression *gtexpr;

Lexpression *lexpr;

VarList var_list;

Envar *var;

L_Car l_car;

L_List l_list;

Int_array *int_array;

Float_array *float_array;

void *u_pointer;

}u;

};

G.1.2 Important Variables

The following symbols can be found in ‘oprs-type-pub.h’. (see [Special Symbols],
§3.3, page 51)

nil sym Kernel Variable

extern Symbol nil sym is the nil symbol. This is the symbol you
should return (in a Term) when an action fails.

lisp t sym Kernel Variable

extern Symbol lisp t sym is the T symbol.

G.1. KERNEL FUNCTIONS 335

wait sym Special Symbols

extern Symbol wait sym is the :WAIT symbol as returned by ac-
tions when they have not completed their computation.

current oprs Kernel Variable

extern Oprs * current oprs is the global variable which points
at the current OPRS kernel. It is used whenever you want to access
some specific modules of the kernel, like the intention graph.

current tib Kernel Variable

extern Thread Intention Block * current tib is the global vari-
able which points at the current tib.

current intention Kernel Function

extern Intention* current intention is the current intention
of the intention graph ig (NULL if not applicable).

main loop pool sec Kernel Variable

extern long main loop pool sec is the global variable which points
at the number of seconds the OPRS Kernel will wait before checking
the sleeping conditions of the sleeping intentions. It is used in con-
junction with main loop pool usec presented below. It is defined
in ‘default-user-external.h’.

main loop pool usec Kernel Variable

extern long main loop pool usec is the global variable which
points at the number of micro seconds the OPRS Kernel will wait
before checking the sleeping conditions of the sleeping intentions. It
is used in conjunction with main loop pool sec presented above. It
is defined in ‘default-user-external.h’.

Example of use (withdrawn from ‘default-user-external.c’):

void start_kernel_user_hook()

{

intention_list_sort_predicate = &my_intention_list_sort;

main_loop_pool_sec = 0L;

main_loop_pool_usec = 10000L; /* 10 milliseconds */

}

x oprs top level widget Kernel Variable

extern Widget x oprs top level widget is the variable which
points at the X-OPRS top level widget. It can be used by the user
to hook its own Xt widget in the widget tree, for its own interface.
It is defined in ‘xp-main-pub.h’.

336 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

G.1.3 Important Constants

The 2 following constants can be found in ‘constant-pub.h’.

#define TRUE 1

#define FALSE 0

G.1.4 Oprs Manipulation Functions

These function prototypes can be found in the file ‘oprs f-pub.h’.
oprs intention graph Kernel Function

Intention Graph * oprs intention graph (Oprs *oprs) returns
a pointer to the intention graph of the OPRS passed as an argument
(most likely current oprs).

G.1.5 Array Manipulation Functions

These function prototypes can be found in the file ‘oprs-array f-pub.h’.
make float array from array Kernel Function

Term * make float array from array (int size, double *array)

returns a Term * of type FLOAT ARRAY containing the array of size
size passed in argument.

make int array from array Kernel Function

Term * make int array from array (int size, int *array) re-
turns a Term * of type INT ARRAY containing the array of size size

passed in argument.

get array from float array Kernel Function

double * get array from float array (Term *t) returns a dou-
ble * pointer to the array of the FLOAT ARRAY contained in the term
t.

get array from int array Kernel Function

int * get array from int array (Term *t) returns a int * pointer
to the array of the INT ARRAY contained in the term t.

get float array size Kernel Function

int get float array size (Term *t) returns an int which is the
size of the FLOAT ARRAY contained in the term t.

get int array size Kernel Function

int get int array size (Term *t) returns an int which is the
size of the INT ARRAY contained in the term t.

G.1. KERNEL FUNCTIONS 337

G.1.6 Fact and Goal Manipulation Functions

These function prototypes can be found in the file ‘fact-goal f-pub.h’.
fprint goal Kernel Function

void fprint goal (FILE *file, Goal* goal) prints the goal in
the file file.

print goal Kernel Function

void print goal (Goal *goal) prints the goal on stdout.

fprint fact Kernel Function

void fprint fact (FILE *file, Fact *fact) prints the fact in
the file file.

print fact Kernel Function

void print fact (Fact *fact) prints the fact on stdout.

fact soak Kernel Function

Oprs Date fact soak (Fact *fact) returns the date at which
this fact was taken into account by the soak mechanism. This
is only meaningful if Time Stamping has been allowed (see [OPRS
Kernel Run Option Commands], §2.6, page 34, set time stamping

on|off).

fact sender Kernel Function

PString fact sender (Fact *fact) returns the name of the sender
if this fact was a message, NULL if it is an internally generated fact.
This function can in fact be used to check if the fact is an external
message or a fact.

fact soak Kernel Function

Oprs Date fact soak (Fact *fact) returns the date at which
this fact was taken into account by the soak mechanism. This
is only meaningful if Time Stamping has been allowed (see [OPRS
Kernel Run Option Commands], §2.6, page 34, set time stamping

on|off).

fact creation Kernel Function

Oprs Date fact creation (Fact *fact) returns the date at which
this fact was created.This is only meaningful if Time Stamping has
been allowed (see [OPRS Kernel Run Option Commands], §2.6, page
34, set time stamping on|off).

fact reception Kernel Function

338 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

Oprs Date fact reception (Fact *fact) returns the date at which
this fact was received by the kernel.This is only meaningful if Time
Stamping has been allowed (see [OPRS Kernel Run Option Com-
mands], §2.6, page 34, set time stamping on|off).

fact response Kernel Function

Oprs Date fact response (Fact *fact) returns the date at which
all the applicable OPs have completed because of this fact (if no
OP was applicable, it returns a zero date). This is only meaningful
if Time Stamping has been allowed (see [OPRS Kernel Run Option
Commands], §2.6, page 34, set time stamping on|off).

goal soak Kernel Function

Oprs Date goal soak (Goal *goal) returns the date at which
this goal was taken into account by the soak mechanism. This
is only meaningful if Time Stamping has been allowed (see [OPRS
Kernel Run Option Commands], §2.6, page 34, set time stamping

on|off).

goal creation Kernel Function

Oprs Date goal creation (Goal *goal) returns the date at which
this goal was created. This is only meaningful if Time Stamping
has been allowed (see [OPRS Kernel Run Option Commands], §2.6,
page 34, set time stamping on|off).

goal reception Kernel Function

Oprs Date goal reception (Goal *goal) returns the date at which
this goal was received by the kernel. This is only meaningful if Time
Stamping has been allowed (see [OPRS Kernel Run Option Com-
mands], §2.6, page 34, set time stamping on|off).

goal response Kernel Function

Oprs Date goal response (Goal *goal) returns the date at which
all the applicable OPs have completed because of this goal (if no
OP was applicable, it returns a zero date). This is only meaningful
if Time Stamping has been allowed (see [OPRS Kernel Run Option
Commands], §2.6, page 34, set time stamping on|off).

G.1.7 Fact Posting Functions

The kernel provide a number of functions to allow the user to add a new fact from
its own code. This mechanism can be very useful on a VxWorks implementation
as it will allow the user to post/add a fact from a different process (one the same
board though). Under traditional Unix system, these functions work too but

G.1. KERNEL FUNCTIONS 339

can be more simply emulated using the send command to parser function (see
[Miscellaneous Kernel Functions], §G.1.14, page 345).

‘One should make sure that a OPRS Kernel is running and is alive
before calling these functions. If no OPRS Kernel is running, these
functions will most likely crash the calling process.’

These function prototypes can be found in the file ‘oprs f-pub.h’.
add external fact Kernel Function

void add external fact (char *predicat, TermList param list)

This function will add the fact built with predicat and param list

in the current oprs kernel. The param list should be used only
once. The predicat argument can be freed after the call. Under
VXWOrks, this function can be called from another process. Proper
variable modification is protected by mutex semaphores.

make external term list Kernel Function

TermList make external term list (int nb arg, ...) Build
and return a ”use once only” TermList containing nb arg elements
built with the subsequent paire TermType, Term * in the argument
list. See the example below. All the element are duplicated, i.e.
strings, symbols are appropriately copied, except for those produce
with make external term comp and make external lisp list. You
should therefore appropriately free the objects passed to this func-
tion.

make external term comp Kernel Function

Term Comp * make external term comp (char *function, TermList

param list) This function will build a ”use once only” TermComp
built with function and param list. The param list should be
used only once. The function argument can be freed after the call.
This function is usually used inside make external term list, in
which case its result should not be freed.

make external lisp list Kernel Function

L List make external lisp list (TermList param list) This func-
tion will build a ”use once only” L List built with param list. The
param list should be used only once. This function is usually used
inside make external term list, in which case its result should not
be freed.

Here is a complete example to illustrate the use of the functions presented
above:

add_external_fact(

"boo",

make_external_term_list(

340 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

6,

FLOAT, 3.1415,

INTEGER, 5,

U_POINTER, 0x123456,

ATOM, "foobar",

STRING, "This is a string in the fact",

LISP_LIST, make_external_lisp_list(

make_external_term_list(

2,

FLOAT, 0.0,

ATOM, "second")),

TERM_COMP, make_external_term_comp(

"bar",

make_external_term_list(

2,

INTEGER, -1,

ATOM, "atom"))));

a call to the function above will post the fact:
(BOO 3.1415 5 0x123456 FOOBAR "This is a string in the fact" (. 0.0

SECOND.) (BAR -1 ATOM))

G.1.8 Intention Manipulation Functions

These function prototypes can be found in the file ‘intention f-pub.h’.
fprint intention Kernel Function

void fprint intention (FILE *file, Intention *intention) prints
the intention in file.

intention priority Kernel Function

int intention priority (Intention *intention) returns the
priority of intention.

intention fact Kernel Function

Fact * intention fact (Intention *intention) returns the fact
which caused this intention to arise (NULL if not applicable).

action first call Kernel Function

PBoolean action first call () when executed in a C action
code, returns TRUE if this is the first time this action is called, FALSE
otherwise. This is used for action slicing to distinguish the first call
from the subsequent call.

action number called Kernel Function

G.1. KERNEL FUNCTIONS 341

int action number called () when executed in a C action code,
returns the number of time this action has been called in this context
(it is equal to 0 in the first call) . This is used for action slicing to
distinguish subsequent calls.

intention goal Kernel Function

Goal * intention goal (Intention *intention) returns the goal
which caused this intention to arise (NULL if not applicable).

intention bottom op instance Kernel Function

Op Instance * intention bottom op instance (Intention *intention)

returns the bottom OP instance of this intention stack, NULL if the
stack is empty.

G.1.9 OP Instance Manipulation Functions

These function prototypes can be found in the file ‘op-instance f-pub.h’.
fprint op instance Kernel Function

void fprint op instance (FILE *f, Op Instance *opi) prints
the opi in file.

op instance op Kernel Function

Op Structure * op instance op (Op Instance *opi) returns the
Op Structure pointed by this opi, i.e. the OP from which this OP instance
is an instance...

op instance goal Kernel Function

Goal * op instance goal (Op Instance *opi) returns the goal
which caused this opi to arise (NULL if not applicable).

op instance fact Kernel Function

Fact * op instance fact (Op Instance *opi) returns the fact
which caused this opi to arise (NULL if not applicable).

G.1.10 OP Manipulation Functions

OPs and OP structures are the same type of object. When we say OP, we mean
OP structure, this is explicited to avoid any confusion with OP instances (which
are instances of applicable OP structures).

These function prototypes can be found in the file ‘op-structure f-pub.h’.
op name Kernel Function

PString op name (Op Structure *op) returns the name of the
op. This function can be used to build an evaluable predicate which
indicates (in a Meta OP) if a OP instance is an instance of itself...

342 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

op file name Kernel Function

PString op file name (Op Structure *op) returns the file name
of the op.

G.1.11 Intention Graph Manipulation Functions

These function prototypes can be found in the file ‘int-graph f-pub.h’.
intention graph roots Kernel Function

Intention List intention graph roots (Intention Graph *ig)

returns the current roots of the intention graph ig.

G.1.12 Allocation Functions

‘Memory Allocation Rules’ The standard allocation functions are of course
available for the user to program its evaluable functions, predicates and actions
(as well as all the linked code to the kernels). However, all the objects handled
by the kernel itself (mostly terms and their components) must be allocated/freed
using the following macros. Objects pointed by USER POINTER can be allo-
cated/freed as the user want. In any situation, never mix the different allocation
mechanism (in particular on systems where the standard memory allocator is
used: VxWorks, Purified version, etc.). Mixing them will lead to allocation/free
error.

OPRS MALLOC Kernel Macro

void * OPRS MALLOC (size t nBytes) This macro allocate nBytes
of memory and return a void *pointer to it. The allocated mem-
ory must be freed with OPRS FREE. ‘Caution:’ All objects (and
their components) returned to the kernel must be allocated using
the OPRS MALLOC macro or the following macro MAKE OBJECT.

Term *toto_eval_func(TermList terms)

{

Term *res;

res = MAKE_OBJECT(Term);

res->type = STRING;

res->u.string = (char *)OPRS_MALLOC(20);

....

return res;

}

MAKE OBJECT Kernel Macro

G.1. KERNEL FUNCTIONS 343

type * MAKE OBJECT (type) This macro allocates memory to store
an object of type type, and returns a pointer to this memory block.

The parameter is a type specification. The macro uses it to allocate
the right amount of memory and to generate the proper recasting
instructions to make both the ıC-compiler and ılint(1) happy.

‘Caution:’ Do not allocate using your own memory allocator (pro-
viding it is linked in the OPRS Kernel). Always use the MAKE OBJECT

macro for your memory use.

Term *toto_eval_func(TermList terms)

{

Term *t1, *res;

res = MAKE_OBJECT(Term);

....

return res;

}

OPRS FREE Kernel Macro

void OPRS FREE (void *object) This macro frees the memory
allocated with MAKE OBJECT. ‘Caution:’ Do not attempt to free
memory you did not allocate... You should only free temporary
variables you created for your own use.

Term *toto_eval_func(TermList terms)

{

Term *temporary, *res;

res = MAKE_OBJECT(Term);

temporary = MAKE_OBJECT(Term);

....

OPRS_FREE(temporary);

return res;

}

The prototypes of the following functions are defined in ‘oprs-type f-pub.h’.
make atom Kernel Function

char * make atom (char *atom) return an atom which can then
be stored in a built Term.

find atom Kernel Function

char * find atom (char *atom) it does exactly like make atom

but warn you if the symbol has not been declared previously.

344 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

declare atom Kernel Function

char * declare atom (char *atom) it does exactly like make atom

but does not warn you if the symbol had not been declared previ-
ously.

build string Kernel Function

Term * build string (char *string) build a Term containing a
copy of the (STRING) string. It returns the pointer to this Term.

build integer Kernel Function

Term * build integer (int i) build a Term containing the inte-
ger (INTEGER) i. It returns the pointer to this Term.

build float Kernel Function

Term * build float (double i) build a Term containing the dou-
ble (FLOAT) i. It returns the pointer to this Term.

build l list Kernel Function

Term * build l list (L List l) build a Term containing the
L List (LISP LIST) i. It returns the pointer to this Term.

build c list Kernel Function

Term * build c list (OPRS LIST l) build a Term containing the
OPRS LIST (OPRS LIST) l. It returns the pointer to this Term.

build qstring Kernel Function

Term * build qstring (char *i) build a Term containing the
string (STRING) i. It returns the pointer to this Term.

build id Kernel Function

Term * build id (char *id) build a Term containing the id (ATOM)
id. It returns the pointer to this Term.

build t Kernel Function

Term * build t (void) build a Term containing the (T) id. It
returns the pointer to this Term.

build nil Kernel Function

Term * build nil (void) build a Term containing the (NIL) id.
It returns the pointer to this Term.

free term Kernel Function

void free term (Term *term) Free a Term.

G.1. KERNEL FUNCTIONS 345

G.1.13 LISP LIST Manipulation Functions

These function prototypes can be found in the file ‘lisp-list f-pub.h’.
l car Kernel Function

L Car l car (L List l) returns the car of an L List.

l cdr Kernel Function

L List l cdr (L List l) returns the cdr of an L List.

l cons Kernel Function

L List l cons (L Car car, L List cdr) returns a new L List,
created by consing the car with the cons. The car is duplicated, but
not the cdr.

l add to tail Kernel Function

L List l add to tail (L List list, L Car car) adds a car at
the end of an L List. The car is duplicated, not the list.

l length Kernel Function

int l length (L List l) returns and int, the length of the L List.

l nth Kernel Function

L Car l nth (L List l, int i) returns the nth L Car element of
the L List.

make l car from term Kernel Function

L Car make l car from term (Term *t) returns a L Car contain-
ing the copy of the term t.

get term from l car Kernel Function

Term * get term from l car (L Car l) returns a pointer to the
term contained in the L Car.

copy l list Kernel Function

L List copy l list (L List l) returns a copy of the L List.

G.1.14 Miscellaneous Kernel Functions

send command to parser Kernel Function

void send command to parser (PString command) is used to get
the kernel to execute a particular command. This can be used to con-
clude something in the database, or adding a fact, or any command
parsable by the parser. You should make sure that the command
has the proper syntax, or you may hang the kernel for ever... It is
strongly advised to terminate the command with a new line.

346 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

G.2 Registration and Communication Functions,
‘libmp.a’

See [How to Connect from an External Module], §12.6, page 159, for a descrip-
tion of the functions available to connect to the Message Passer. See [Messages
Format], §12.7, page 161, for a description of the functions available to exchange
messages with the Message Passer.

G.3 ‘liblist.a’ library

The ‘liblist.a’ library is a very general library which contains the functions
dealing with lists of objects, among other things. It is heavily used by the
various parts of the OPRS Development Environment and is needed if you plan
to write your own evaluable predicates or functions (to parse the argument list
for example which is a TermList).

We present here a subset of this library. We do advise the user to stick with
the functions we present below, and not to use undocumented functions from
this library.

The ılistPack library provides an abstract data type called a OPRS LIST, and
a complete set of operations to manipulate objects of that type. In its simplest
form, a OPRS LIST is an ordered collection of objects which the user creates.
ılistPack functions allow the user to add objects at any point in a OPRS LIST,
to retrieve objects from OPRS LISTs, to delete objects from OPRS LISTs, and to
apply user functions to OPRS LISTs. Furthermore, the notion of current object
exists, and each OPRS LIST maintains the required information a step forward
and backward from the current object.

ılistPack provides the single data type OPRS LIST. No operation on variables
of type OPRS LIST is allowed, except for assigning them the values returned by
ılistPack functions and for passing them as parameters to ılistPack functions.
However, it is permitted (and safe) to assign variables of type OPRS LIST to
other variables of type OPRS LIST.

G.3.1 Creating Lists

Before the user may place objects in a OPRS LIST, he must create it with the
function - make list() - which returns a pointer to the newly created list.

make list listPack Function

OPRS LIST make list () simply creates a new list and returns a
pointer to it. The value returned by make list() ımust be saved by
the caller in order to use that OPRS LIST with subsequent ılistPack
functions.

G.3.2 Destroying Lists

When the user no longer needs a OPRS LIST, he may destroy it.

G.3. ‘LIBLIST.A’ LIBRARY 347

FREE OPRS LIST listPack Macro

void FREE OPRS LIST (OPRS LIST list) deallocates the storage
needed for a OPRS LIST. After a OPRS LIST has been passed to
FREE OPRS LIST it may not be used in any subsequent ılistPack func-
tion. list is the list which is to be freed.

G.3.3 Placing Elements in a List

ılistPack provides many different ways of inserting elements into OPRS LISTs.
The one to use depends on where in the list the user wishes to place the element.

Conventionally, every list has two ends called the head and the tail. An
element may be added at either end and thus becomes the new head or tail.

Alternatively, each list may be seen as an array of elements. The head is the
first element, the tail is the list length(list)-th. Elements may be added
in the middle of a list by specifying the position before which they are to be
inserted. The position is then simply the distance from the head of the list.

add to head listPack Function

OPRS NODE add to head (OPRS LIST list, OPRS NODE element) The
element is added before the head of the specified list, thus becoming
the new head. For convenience, add to head() returns (OPRS NODE

element). This allows the user to perform operations like

save = add_to_head(list_1, read_next_element());

or anything else. ılistPack tries to impose no hidden restriction on
the use of lists.

add to tail listPack Function

OPRS NODE add to tail (OPRS LIST list, OPRS NODE element) The
element is added after the tail of the specified list and thus becomes
the new tail. For convenience, add to tail() returns (OPRS NODE

element).

insert list pos listPack Function

OPRS NODE insert list pos (OPRS LIST list, OPRS NODE element,

int pos) (OPRS NODE element) is inserted into (OPRS LIST list)

before an element number int pos. The positions of all elements
subsequent to the inserted element are thus incremented.

If pos is less than or equal to one, it is inserted before the head of
list. If pos is greater than list length(list), it is added after
the tail.

For convenience, insert list pos() returns (OPRS NODE element).

replace list listPack Function

348 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

int replace list (OPRS LIST list, OPRS NODE old, OPRS NODE

new) The first appearance of OPRS NODE old in the specified list
is replaced with (OPRS NODE new). No other part of (OPRS LIST

list) is affected. replace list() returns a boolean TRUE if the
replacement succeeded and a boolean FALSE otherwise. Thus, re-
placing all occurrences of an element in a list may be done via

while (replace_list(list, old, new)) /* null body */ ;

append list listPack Function

OPRS LIST append list (OPRS LIST first, OPRS LIST second)

append list() adds all the elements of (OPRS LIST second) after
the tail of (OPRS LIST first).

The algorithm used to append lists destroys the second list. There-
fore, (OPRS LIST second) may not be used in subsequent ılistPack
functions. It may be thus desirable to use append list() as:

append_list(first, copy_list(second, flag)); /* append a copy of list 2 */

append list() returns (OPRS LIST first) to the caller. This al-
lows the following convenient operation:

new_list = append_list(copy_list(first, flag), l2); /* l2 is destroyed! */

Of course, these are also valid uses of append list():

new_list = append_list(copy_list(first, flag), copy_list(second, flag));

append_list(first, second);

append_list(first, append_list(second, third));

G.3.4 Examining the Elements of a List

Once elements have been placed in a OPRS LIST, they are accessible to the
user through any pointer pointing to them that the user has maintained. The
user does not often want to maintain his own pointers, and relies on ılistPack
functions to return pointers to the elements in a list.

get list head listPack Function

OPRS NODE get list head (OPRS LIST list)

get list head() returns a pointer to the first element in the spec-
ified list. If the OPRS LIST is empty, NULL is returned.

get list tail listPack Function

OPRS NODE get list tail (OPRS LIST list)

get list tail() returns a pointer to the last element in the speci-
fied list. If the OPRS LIST is empty, NULL is returned.

G.3. ‘LIBLIST.A’ LIBRARY 349

get list pos listPack Function

OPRS NODE get list pos (OPRS LIST list, int pos) get list pos()

returns a pointer to the pos-th elements in the specified list. If the
OPRS LIST is empty, pos is less than one, or pos is greater than the
length of the list, NULL is returned.

G.3.5 Removing Elements from Lists

Elements may be removed from OPRS LISTs with the appropriate ılistPack func-
tions. All these functions return a pointer to the element removed from the list,
so the user does not need to save the pointer before removing the element.

get from head listPack Function

OPRS NODE get from head (OPRS LIST list) get from head() re-
turns a pointer to the first element in the specified list. The element
is removed from the list, and the next element becomes the new
head. If the OPRS LIST is empty, NULL is returned.

get from tail listPack Function

OPRS NODE get from tail (OPRS LIST list) get from tail() re-
turns a pointer to the last element in the specified list. The element
is removed from the list, and the previous element becomes the new
tail. If the OPRS LIST is empty, NULL is returned.

delete list pos listPack Function

OPRS NODE delete list pos (OPRS LIST list, int pos) delete list pos()

returns a pointer to the pos-th element in the specified list. The
element is removed from the list, and the position of subsequent el-
ements is decremented. If the OPRS LIST is empty, pos is less than
one, or pos is greater than the length of the list, then NULL is re-
turned.

delete list node listPack Function

OPRS NODE delete list node (OPRS LIST list, OPRS NODE element)

The first appearance of (OPRS NODE element) in the specified OPRS LIST

is deleted. For convenience, (OPRS NODE element) is returned to
the caller, but if the list is empty or (OPRS NODE element) is not
present, then NULL is returned.

G.3.6 Examining the Lists

ılistPack provides several functions which return boolean values based on in-
quiries being done upon OPRS LISTs.

list length listPack Function

350 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

int list length (OPRS LIST list) This function returns the num-
ber of elements in the specified list.

in list listPack Function

int in list (OPRS LIST list, OPRS NODE element) This func-
tion returns 0 (boolean FALSE) if (OPRS NODE element) does not
appear in the specified (OPRS LIST list). Otherwise, it returns the
position of the element in the list (in the range 1..list length(list)).

list empty listPack Function

int list empty (OPRS LIST list) This function returns boolean
TRUE if the specified OPRS LIST has no element, it returns boolean
FALSE otherwise.

first in list listPack Function

int first in list (OPRS LIST list, OPRS NODE element) It re-
turns TRUE if the head of the OPRS LIST is the specified (OPRS NODE

element).

last in list listPack Function

int last in list (OPRS LIST list, OPRS NODE element) It re-
turns TRUE if the tail of the OPRS LIST is the specified (OPRS NODE

element).

G.3.7 Applying Functions to Lists

The ıC language provides the capability to pass functions as parameters to other
functions. This is utilized by ılistPack to allow users to write list processing
functions. Instead of having the user walk through each OPRS LIST (i.e. with
get list pos()) and pass each returned element to some function, the function is
passed to ılistPack and calls the user function.

List processing always begins at the head of the OPRS LIST, and proceeds
towards the tail.

‘Warning:’ It is extremely dangerous to add or remove elements from a
OPRS LIST ıwhile a function is being applied to it. ılistPack can handle most of
the common cases that occur when this happens, however such code should be
rigorously exercised.

for all list listPack Function

int for all list (OPRS LIST list, (OPRS NODE) ptr, (PFI) func)

The user may have some functions like (int) func((OPRS NODE)

ptr, OPRS NODE element) he wishes to call with every element in
the (OPRS LIST list). for all list() invokes func() for the user
(as often as necessary), adds up the returned values, and returns
the total value to the user. (OPRS NODE ptr) is a pointer to what-
ever the user wishes to pass to the function (i.e. it is a free pointer

G.3. ‘LIBLIST.A’ LIBRARY 351

with which the user may play). There are two related forms of
for all list:

(int) for_all_2list((OPRS_LIST) list, (OPRS_NODE) ptr, ptr2, (PFI) func)

(int) for_all_3list((OPRS_LIST) list, (OPRS_NODE) ptr, ptr2, ptr3, (PFI) func)

They provide one or two additional pointers for the user convenience.
In all forms, the pointer is passed to func() in order, followed by a
(OPRS NODE element).

search list listPack Function

OPRS NODE search list (OPRS LIST list, (OPRS NODE) ptr, (PFI)

func) search list() is useful for finding an element in a OPRS LIST

which matches some criteria. The user writes a function (int)

func(OPRS NODE ptr, OPRS NODE element) which returns boolean
TRUE when it matches the criteria on an element in the specified list.
List processing stops after the first TRUE returns, and the element
on which func() succeeded is returned. NULL is returned if func()
never succeeds.

list equal listPack Function

OPRS LIST list equal (OPRS LIST list1, OPRS LIST list2, PFI

func) This function compares two OPRS LISTs, and returns a boolean
quantity indicating whether they are equivalent or not. (PFI func)

is a function which passes one element from each list, and returns
the boolean quantity describing their equality. The elements in each
OPRS LIST are passed (in order) to func, until list equal() deter-
mines the lists are not equal. If func is NULL, list equal() simply
tests that the elements are the same.

int test_records(rec1, rec2) /* are two records equal? */

struct record *rec1, *rec2; /* both are rec pointers */

{

/* We define them to be equivalent iff height and weight are the same */

return (rec1->height == rec2->height) && (rec1->weight == rec2->weight);

}

...

/* Print the records in the first list, and if the second list is

not the same, print the records in that list */

for_all_list(rec_list1, stdout, print_record);

if (! (list_equal(rec_list1, rec_list2, test_records)))

for_all_list(rec_list1, stdout, print_record);

352 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

G.3.8 Changing the Order of the Elements

Since one of the fundamental tasks of programming entails sorting, ılistPack
provides primitives to reorder a list of elements to the user specifications.

reverse list listPack Function

OPRS LIST reverse list (OPRS LIST list) The order of elements
in the OPRS LIST is reversed. For example, the tail becomes the first
element, and the head becomes the last one. (OPRS LIST list) is
returned for the convenience of the caller.

sort list listPack Function

OPRS LIST sort list (OPRS LIST list) The elements of the spec-
ified list are sorted in the ascending order of their tag values. The
list is returned so the user can do:

new = reverse_list(sort_list(eval_list(copy_list(my_list, flag),

my_func)));

sort list func listPack Function

OPRS LIST sort list func (OPRS LIST list, PFI func) This func-
tion sorts a OPRS LIST with more complicated criteria than can easily
be specified by an integer tag variable. The user specified functions,
func(element a, element b), return boolean TRUE if they are
ordered properly (i.e. element a precedes element b) and FALSE oth-
erwise. sort list func() returns (OPRS LIST list) for the user
convenience. Note: For efficiency reasons, func() should return
TRUE if the elements are equivalent.

merge sort list func listPack Function

OPRS LIST merge sort list func (OPRS LIST list, PFI func) Iden-
tical to sort list func(), but uses merge sort rather than bubble
sort.

G.3.9 Marking Current Position in a OPRS LIST

A spare pointer in the OPRS LIST header record can be used to point at a
particular place in a OPRS LIST. This feature may be used to walk forwards or
backwards along a OPRS LIST, doing incremental searches or loop iteration.

Note that there is only one such pointer in each OPRS LIST. Thus the use
of any function which changes that pointer will affect any other software that
uses it. In particular, it means that the loop through list macro may not be
used recursively on the same list. If this is necessary, use the for all list()

function or for list loop() macro.
get list next listPack Function

G.3. ‘LIBLIST.A’ LIBRARY 353

OPRS NODE get list next (OPRS LIST list, OPRS NODE current)

This function advances the current OPRS LIST element to be the one
immediately following (OPRS NODE current), and that element is
returned.

If current is not in (OPRS LIST list), NULL is returned. If current
is NULL, the head of the list becomes the current element, and is re-
turned.

This function is particularly useful for iterating on two lists simul-
taneously:

ptr1 = get_list_next(list1, NULL); /* get first element of list1 */

ptr2 = get_list_next(list2, NULL); /* get first element of list2 */

while (ptr1 != NULL && ptr2 != NULL){ /* loop on each element */

printf("Nodes %x and %x\n", ptr1, ptr2); /* code to deal with elements */

ptr1 = get_list_next(list1, ptr1); /* now get next from list1 */

ptr2 = get_list_next(list2, ptr2); /* now get next from list2 */

}

get list prev listPack Function

OPRS NODE get list prev (OPRS LIST list, OPRS NODE current)

This function retreats the current OPRS LIST element to be the one
immediately preceding (OPRS NODE current), and that element is
returned.

If current is not in (OPRS LIST list), NULL is returned. If current
is NULL, the tail of the list becomes the current element, and is re-
turned.

get list next func listPack Function

OPRS NODE get list next func (OPRS LIST list, OPRS NODE current,

OPRS NODE ptr, PFI func) This function advances the current
OPRS LIST element to be the first one in (OPRS LIST list) af-
ter (OPRS NODE current) upon which the function func returns
boolean TRUE. That element is returned.

If current is not in (OPRS LIST list), NULL is returned. If current
is NULL, processing starts with the first element.

(OPRS NODE ptr) is passed to the function, func as a free parameter.
Hence the signature for func should look like:

int my_function(parameter, list_element)

OPRS_NODE parameter, list_element; /* or any other pointer type */

{

}

354 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

This function is useful for processing selected elements in a OPRS LIST:

ptr = NULL;

while ((ptr = get_list_next_func(list, ptr, NULL, my_function)) != NULL)

{

... /* process each element that my_function found */

}

loop through list listPack Macro

void loop through list (OPRS LIST list, type pointer, type)

This macro is provided by ılistPack to serve as a for loop in nor-
mal programming. A ıC-language for statement is generated and
iterates pointer through the elements in (OPRS LIST list).

Note that only one loop through list() macro can be active on a
given list at any time. If recursion is desired, use the for list loop()

macro.

The last parameter is a type specification, and is used by the macro
to generate the proper recasting instructions to make both the ıC-
compiler and ılint(1) happy.

struct foo {

int x, y;

} * temp; /*temp is a pointer */

OPRS_LIST my_list;

...

/* for each pointer in the list */

loop_through_list(my_list, temp, struct foo *){

/* process the element */

printf("%d, %d\n", temp->x, temp->y);

}

for list loop listPack Macro

void for list loop (OPRS LIST list, OPRS LIST temp, type pointer,

type) This macro is provided by ılistPack to serve as a for loop
in normal programming. A ıC-language for statement is generated
and iterates pointer through the elements in (OPRS LIST list).

The last parameter is a type specification, and is used by the macro
to generate the proper recasting instructions to make both the ıC-
compiler and ılint(1) happy.

G.3. ‘LIBLIST.A’ LIBRARY 355

It differs from loop through list() in that it allows recursive ac-
cess to the list, and thus requires a local variable. The above example
would read.

OPRS_LIST loop_temp;

/* for each pointer in the list */

for_list_loop(my_list, loop_temp, temp, struct foo *){

/* process the element */

printf("%d, %d\n", temp->x, temp->y);

}

356 APPENDIX G. LIBRARY AND KERNEL FUNCTIONS

Appendix H

Lisp and Lisp-like Functions

There is no a priori reason for the OPRS Development Environment to provide
Lisp like functions, or a Lisp environment. However, for upward compatibility
reasons, and to allow the user familiar with Lisp lists manipulation functions to
use Lisp functions in the OPRS Kernel, we added various functions and data
structures in the OPRS Development Environment.

In this chapter, we describe the different functions and the mechanisms which
are provided to use lispisms in the OPRS Development Environment.

H.1 LISP LIST

First of all, it is important to note that the overall syntax used in the OPRS
Development Environment is “Lisp like”, and looks like Lisp. In other words,
the various expressions are currently given in a syntax which looks a lot like the
Lisp one (parenthesis are certainly here to remind you of this). But it does not
mean there is a Lisp interpreter behind the reader. In fact, whatever is read
from the keyboard, or from a file is fed in a parser (or a command interpreter)
and transformed in internal structures (the details of which are of no interest
to the reader). Most of these structures are accessed by the user or the kernel
in a transparent way. For example, when you conclude the fact (foo (bar 3

4)) in the database, you cannot do a car on the inner expression (bar 3 4)

to conclude let say (foo bar). The term (bar 3 4) is not a Lisp list, it is a
composed term.

However, one can define Lisp like structures. They are subject to a special
reader syntax. In Lisp, when the reader encounters a left parenthesis (, he
builds a list until he finds the matching closing parenthesis). In OPRS, the left
and right parentheses do not create any Lisp list object in any situation. To
create a LISP LIST (note the Term type) (on which you will be able to apply
Lisp functions such as car, cdr, cons), you need to use (. and a matching
.). As a mnemonic, you can remember that the dot . is the cons operator in
Lisp. The OPRS writer uses the same syntax to write LISP LIST. So, if you

357

358 APPENDIX H. LISP AND LISP-LIKE FUNCTIONS

conclude (foo (. bar 3 4 .)) in the database, you have a (. bar 3 4 .)

term which is a LISP LIST, not a composed term, and you can apply to it any
function requiring a LISP LIST as an operand.

One interesting thing in Lisp is the lack of type. The various elements of a list
are typed internally by the Lisp kernel, but you can cons anything with anything,
and do an eval on it if you wish to. In OPRS, it is the same, most objects
are typed when read and the syntax defines exactly what can go where. For
example, the expression (foo (1 2 3 4)) is not legal because 1 is recognized
as an integer and not as a symbol. However, one may want to manipulate
integer lists, or lists of objects unknown to the reader a priori (probably internal
structures such as OP-instances, intentions, goals, etc.). In this case, one uses
LISP LISTs: because of their lack of type requirement, they can basically handle
whatever terms. When you build a list like in the expression: (foo (. 1 2

3 4 .)) you actually build a LISP LIST of terms which are all integers. In
fact, this is how you can build LISP LIST of LISP LISTs... The expression (foo

(. (. 1 2 3 4 .) 2 3 4 .)) is a predicate with one term, a LISP LIST

which contains terms, the first of which is a LISP LIST itself. Even if it is not
obvious at a first glance, a list of terms is the only list you can build from
the reader. All other lists and the objects they contain are built by internal
operations. For example, the soak meta fact contains a LISP LIST of OP-
instances.

Keep in mind that the elements of a LISP LIST are Terms.
The empty LISP OPRS LIST is defined as follow in the file ‘oprs-type-pub.h’.

extern const L_List l_nil; /* The Lisp nil constant. */

H.2 Standard Lisp Functions

Standard Lisp functions are predefined evaluable functions (see [Predefined
Evaluable Functions], §6.1, page 95) used to manipulate LISP LIST.

length Evaluable Function

INTEGER length (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

select-randomly Evaluable Function

Any Term select-randomly (LISP LIST) See [Predefined Evalu-
able Functions], §6.1, page 95.

cons Evaluable Function

LISP LIST cons (Any Term, LISP LIST) See [Predefined Evalu-
able Functions], §6.1, page 95.

first Evaluable Function

Any Term first (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

H.2. STANDARD LISP FUNCTIONS 359

car Evaluable Function

Any Term car (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

cdr Evaluable Function

LISP LIST cdr (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

caar Evaluable Function

Any Term caar (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

cadr Evaluable Function

Any Term cadr (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

cdar Evaluable Function

LISP LIST cdar (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

cddr Evaluable Function

LISP LIST cddr (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

caaar Evaluable Function

Any Term caaar (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

cadar Evaluable Function

Any Term cadar (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

cdaar Evaluable Function

LISP LIST cdaar (LISP LIST) See [Predefined Evaluable Func-
tions], §6.1, page 95.

cddar Evaluable Function

LISP LIST cddar (LISP LIST) See [Predefined Evaluable Func-
tions], §6.1, page 95.

caadr Evaluable Function

Any Term caadr (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

360 APPENDIX H. LISP AND LISP-LIKE FUNCTIONS

caddr Evaluable Function

Any Term caddr (LISP LIST) See [Predefined Evaluable Functions],
§6.1, page 95.

cdadr Evaluable Function

LISP LIST cdadr (LISP LIST) See [Predefined Evaluable Func-
tions], §6.1, page 95.

cdddr Evaluable Function

LISP LIST cdddr (LISP LIST) See [Predefined Evaluable Func-
tions], §6.1, page 95.

second Evaluable Function

Any Term second (LISP LIST) See [Predefined Evaluable Func-
tions], §6.1, page 95.

nth Evaluable Function

Any Term nth (Integer LISP LIST) See [Predefined Evaluable Func-
tions], §6.1, page 95.

reverse Evaluable Function

LISP LIST reverse (LISP LIST) See [Predefined Evaluable Func-
tions], §6.1, page 95.

Appendix I

Examples

Several examples are included in the OPRS distribution. We shall describe them
in this chapter in an increasing complexity order. All examples are available in
the ‘data’ sub directory of the OPRS Development Environment distribution.
Feel free to look at these examples and to play with the various files contained
in this directory (make a copy if you need to modify them).

I.1 Message Example

This example presents one important feature of OPRS: the message passing
mechanism. To run it, you create three OPRS, or X-OPRS Kernels named foo,
bar and boo, in which you load ‘data/foo.inc’, ‘data/bar.inc’ and ‘data/boo.inc’
respectively.

I.1.1 Message Example OPs

Here are the procedures from one of the OP files provided for this demo. It can
be found in the file ‘bar.opf’.

• —test message—

A graphic OP.

Invocation: (BAR)

Effects: ()

Documentation: This OP is used in the foo, bar and boo demo to send

a message to the ‘next’ OPRS when it receives one of its

name.

The other OP files are similar.

361

362 APPENDIX I. EXAMPLES

I.2 Test Examples

Other OPs files are provided in the standard distribution as examples. Most of
these examples are located in the ‘data/test’ directory.

I.2.1 Wait OPs

These OPS can be found in the file ‘test/wait.opf’.

• —test wait—

A graphic OP.

Invocation: (TEST-WAIT $N)

Documentation: Just a test on the wait temporal operator.

• —test2 @—

A graphic OP.

Invocation: (! (FOO1 $X))

Documentation: Just to illustrate a test on variables.

I.2.2 LISP LIST manipulation OPs

These OPS can be found in the file ‘example-cons.opf’.

• EXAMPLE

A graphic OP.

Invocation: (! (REVERSE $LIST))

Documentation: Reverse a LISP_LIST list of variable using CONS, CAR, CDR.

I.2.3 Fibonacci OPs

These OPS can be found in the file ‘fib.opf’.

• —Fibonacci 2—

A graphic OP.

Invocation: (! (FIBONACCI2 $N $RESULT))

Effects: ((=> (FIBONACCI2 $N $RESULT)))

Documentation: This OP computes the Fibonacci of $n and remember the

previous value.

By the way, FIBONACCI2 should NOT be declared as a op_predicate.

I.2. TEST EXAMPLES 363

• —Fibonacci—

A graphic OP.

Invocation: (! (FIBONACCI $N $RESULT))

Documentation: This OP computes the Fibonacci of $n.

• —Print Fibonacci 2—

A graphic OP.

Invocation: (! (PRINT-FIBONACCI2 $X))

Documentation: This OP just looks for the fibonacci of $x and prints the result.

• —Print Fibonacci—

A graphic OP.

Invocation: (! (PRINT-FIBONACCI $X))

Documentation: This OP just looks for the fibonacci of $x and prints the result.

I.2.4 Parallel Fibonacci OPs

These OPS can be found in the file ‘fib-par.opf’.

• —Fibonacci—

A graphic OP.

Invocation: (! (FIBONACCI $N $RESULT))

Effects: ()

Documentation: This OP computes the Fibonacci of $n.

• —Print Fibonacci—

A graphic OP.

Invocation: (! (PRINT-FIBONACCI $X))

Effects: ()

Documentation: This OP just looks for the fibonacci of $x and prints the result.

364 APPENDIX I. EXAMPLES

Appendix J

How to Install the OPRS
Development Environment

The easiest way to install OPRS Development Environment is to check the
instructions on http://robotpkg.openrobots.org/ .

If you use robotpkg http://robotpkg.openrobots.org/ and have it in-
stalled already, just do:

cd supervision/openprs

make update

or you can also use git:

git clone git://git.openrobots.org/robots/openprs

cd openprs

./bootstrap.sh

./configure --prefix=<directory where you want to install it>

make install

The rest of this appendix is left for “information” it is mostly out of date
and useless.

J.1 Description of the Distribution

Assuming OPRS Development Environment is installed in the directory ‘/usr/local/oprs/’
you will find in it the directories: ‘bin’, ‘lib’, ‘include’, ‘pub src’, ‘data’, ‘doc’,
‘util’, ‘app-defaults’, ‘site.make’, ‘contrib’ and ‘demo’ (‘src’ if you have a source
license). If your distribution contains more than one architecture distribution,
the ‘bin’ and ‘lib’ directory as well as the ‘site.make’ file (which contain machine
dependant stuff) will be located in a $TARGET directory (as defined by tcsh, i.e
sun4 for SunOS 4.1.3, sparc for Solaris 2.x, VxWorks, etc.).

According to your license, some of these directories may be present or not
(if you do not have a source license, the ‘src’ directory is not present).

365

http://robotpkg.openrobots.org/
http://robotpkg.openrobots.org/

366APPENDIX J. HOWTO INSTALL THE OPRS DEVELOPMENT ENVIRONMENT

Here is an explanation of what you will find in each of these directories (after
installation if you have a source license):

‘bin’ contains all the binaries. If your license is valid for more than one CPU
type, the various binaries (in ‘bin’ and ‘lib’ should be in their $TARGET

directory.

If you plan to use OPRS Development Environment, your PATH environ-
ment variable should contain the appropriate bin directory. Consequently,
you should add the following code to your ‘.login’ or ‘.cshrc’ file.

setenv OPRSDIR /usr/local/oprs

setenv PATH "${PATH}:${OPRSDIR}/${TARGET}/bin"

Here is a list of the files contained in this directory:

‘oprs’ is the OPRS Kernel program.

‘oprs-server’ is the OPRS-Server program.

‘xoprs’ is the X-OPRS Kernel program.

‘mp-oprs’ is the Message Passer program.

‘oprs-cat’ is a program which is used by the X-OPRS Kernel.

‘op-editor’ is the OP Editor program.

‘lib’ contains a number of libraries and relocatable files which you may need to
build your application and to allow it to connect to the Message Passer.

If your license is valid for more than one CPU type, the various bina-
ries/libraries should be in the $TARGET directory.

The relocatable are given in two format, one which can be linked to some
C++ functions, in which case the main is not defined to allow a C++
main to be used (the C++ main performs some initialization required by
C++ functions).

‘libmp.a’ is a library you can use if you want your own program to
connect to the Message Passer.

‘libopaque.a’ is a library which can be necessary if the following symbols
are missing:
user time, user time note, user call from parser.

‘oprs-relocatable’ is a relocatable OPRS Kernel, you can use to build
your own version of the OPRS Kernel (i.e. containing your own evalu-
able functions and predicates).

‘xoprs-relocatable’ is a relocatable X-OPRS Kernel, you can use to
build your own version of the X-OPRS Kernel (i.e. containing your
own evaluable functions and predicates).

J.1. DESCRIPTION OF THE DISTRIBUTION 367

‘c++-oprs-relocatable’ is a relocatable OPRS Kernel, you can use to
build your own version of the OPRS Kernel (i.e. containing your
own evaluable functions and predicates) with C++ code. In this
relocatable the oprs main is called oprs main and takes the same
argument as the real main: argc, argv and envp. oprs main does
not return.

‘ c++-xoprs-relocatable’ is a relocatable X-OPRS Kernel, you can use
to build your own version of the X-OPRS Kernel (i.e. containing your
own evaluable functions and predicates) with C++ code. In this
relocatable the oprs main is called oprs main and takes the same
argument as the real main: argc, argv and envp. oprs main does
not return.

‘include’ contains include files needed to build your own version of the X-
OPRS Kernel and the OPRS Kernel.

‘pub src’ contains some source example files needed to build your own version
of the X-OPRS Kernel and the OPRS Kernel.

‘user-action.c’ contains examples of how to defined your own actions
and an example of a call to declare user action,

‘user-action.h’ contains definitions needed for ‘user-actions.c’.

‘user-ev-function.c’ contains examples of how to defined your evalu-
able functions and example of a call to declare user eval funct.

‘user-ev-function.h’ contains definitions needed for ‘user-ev-function.c’.

‘user-ev-predicate.c’ contains examples of how to defined your own
evaluable and an example of a call to declare user eval pred.

‘user-ev-predicate.h’ contains definitions needed for ‘user-ev-predicate.c’.

‘user-external.c’ contains examples of how to call start kernel user hook

and end kernel user hook.

‘user-external.h’ contains definitions needed for ‘user-external.c’.

‘user-external f.h’ contains function definitions needed for ‘user-external.c’.

‘doc’ contains the documentation of the OPRS Development Environment.
Here is a list of the files contained in this directory:

‘dir’ Info top level dir for the documentation.

‘oprs’ is the oprs master info file.

‘oprs-[0-9][0-9]’ are the oprs info files.

‘oprs.dvi’ is the oprs.dvi file (dvi format).

‘oprs.ps’ is the postscript version of the documentation.

‘fig’ is a directory containing the postscript figures of the manual.

368APPENDIX J. HOWTO INSTALL THE OPRS DEVELOPMENT ENVIRONMENT

‘contrib’ contains some code (source) contributed by other people. For now,
one can find a library which ease the extraction of Terms parameters from
TermLists (as passed to evaluable functions, predicates and actions), but
ans the building of Terms to return value from these functions.

‘site.make’ contains a the Makefile variable used to produce the OPRS De-
velopment Environment you are using. This can be usefull if you have to
produce your own OPRS Kernels.

‘util’ contains a number of utilities, shells, perl scripts and C programs to build
OPRS.

‘Makefile’ a makefile...

‘ad2c’ is a shell script to transform a ‘.ad’ resource file in a string suitable
for inclusion in a ‘.c’ file (to be defined as a fall back resources string).

‘update-inc-file’ is a shell script which upgrade your ‘.inc’ file from the
pre 1.1.1 version format to the newest format.

‘mkdep’ is a perl script which can be used to create dependencies files.

‘vw-script’ is an exemple of a VxWorks script to load and run a OPRS
Kernel, a Message Passer or a Message Passer Killer.

‘lex-includer.l’ is a lex program which is used during the OPRS com-
pilation to build the various lex and yacc grammar files. This file is
only present in the source distribution.

‘data’ contains a number of data files examples (‘.opf ’ files, ‘.inc’ files, ‘.db’
files, ‘.sym’ files, etc.)

‘data/test’ contains a number of test files (‘.opf ’ files, ‘.inc’ files, ‘.db’ files,
‘.sym’ files, etc.)

‘app-defaults’ contains some application default files for the X-OPRS Kernel
application (‘XOprs’) and the OP Editor application (‘Op-editor’). Both
applications are Xt based, and can be customized using the resources
file [Sta91a, Sta91b, Fou]. See [OP Editor Motif Widgets Hierarchy and
Resources], §L.3, page 385 and [X-OPRS Motif Widgets Hierarchy and
Resources], §L.2, page 383 for a list of the widget and resources available.
In any case, you should either put this directory in your XFILESEARCHPATH
environment variable as in:

export OPRS_INSTALL_DIR=/usr/local # change as necessary

if [[! $XFILESEARCHPATH]]; then

export XFILESEARCHPATH="${XFILESEARCHPATH}:${OPRS_INSTALL_DIR}/lib/%T/%N%C"

else

export XFILESEARCHPATH="${OPRS_INSTALL_DIR}/lib/%T/%N%C"

fi

J.2. INSTALLATION FOR DEMONSTRATION LICENSE 369

See [Setting Up your Environment], §19, page 247

The %C suffix is very important if you want to take advantage of the
multi language support of OPRS (see [Xt/Motif Widgets Hierarchy and
Resources], §L, page 381).

Alternatively, copy these two files in your own app default directory pointed
by the environment variable XAPPLRESDIR (in this case, remove the ‘.ad’
suffix).

setenv XAPPLRESDIR ${HOME}/X/app-defaults/

‘demo’ contains some demonstration applications. In particular it contains
the truck-demo.

‘src’ contains all the source of the OPRS Development Environment. This
directory is only present when you have a source license.

J.2 Installation for Demonstration License

The demonstration license is basically provided to “play” with the OPRS Devel-
opment Environment. Therefore, some critical features are disabled to prevent
the user from making a real use of the kernel. For example, the garbage collector
is modified in such a way that the kernel will grow indefinitely after a period of
time, so do not be surprised if you run out of swap space or if your application
is becoming slower and slower, this is due to the swapping activity.

Moreover, you may not get the relocatable files... As a result, you will not
be able to include your evaluable functions or predicates in the kernels.

J.3 Installation for Binary License

Binary license still comes with some sources. Some include files are provided,
and some examples of C code are also given to help the user define his own
evaluable predicates or functions. In fact, when you get a binary license, you
get relocatable executables which must be linked to other object files to be really
executable.

J.4 Installation for Source License

If you have a source license, you have the source of all the OPRS Development
Environment. The distribution contains the ‘src’ directory. You may need to
compile and install the OPRS Development Environment.

For this go in the oprs directory and create a ‘build’ directory at the same
level than the ‘src’ directory. Cd in the ‘build’ directory and then call the
‘util/mkoprsbintree’ utility. Then check the site.make file to customize it (check
the installation directory for example) and then do a:

370APPENDIX J. HOWTO INSTALL THE OPRS DEVELOPMENT ENVIRONMENT

make depend

make

make install

The make depend command will create the dependencies between the sources
files... This step is really require if and only if you plan to modify part of the
sources, and you want then to recompile only the appropriate files. Nevertheless,
it is recommended to do it.

The make command will build the executables, libraries, etc.
The make install command will install the various programs, libraries,

defaults files, data, include in the appropriate directories.
Note that you may have some problem while generating the lex grammar C

files. For example, on some Sun OS version (4.1.3 for example), or under Ultrix
(4.2a), the lex program fails to handle such a large lex grammar. If this is the
case, you should either request a revised version of lex from th OS vendor or
generate the C files on another machine. For this, you may defined something
like:

LEX = rsh <other-host> lex

where ¡other-host¿ is a machine which is able to parse the OPRS lex gram-
mar. Do not use flex as a lex replacement. This will not work (unless you hack
a fair amount of the grammar and the macros).

Appendix K

Grammar Used in the
OPRS Development
Environment

K.1 Syntaxic Grammar Used in the OPRS De-
velopment Environment

Here is the yacc-style grammar used in the different parsers of the OPRS De-
velopment Environment.

goal:

gtexpr

;

fact:

gexpr

;

invocation:

gmexpr

;

context:

|

gmexpr

;

setting:

|

371

372APPENDIX K. GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT

gmexpr

;

properties:

| OP_TK properties_list CP_TK

;

properties_list:

| properties_list property

;

documentation:

| QSTRING_TK

;

effects:

| list_par_gtexpr

;

action:

action_expr

;

action_expr:

OP_TK SPEC_ACT_TK variable

simple_action CP_TK

| OP_TK SPEC_ACT_TK OP_TK var_list CP_TK

simple_action CP_TK

| simple_action

;

simple_action:

OP_TK function

term_list CP_TK

;

op_name:

SYMBOL_TK

;

top: OP_TK DEFOP_TK op_name

fields_list

CP_TK

;

K.1. SYNTAXIC GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT373

fields_list: invocation_field other_fields_list

other_fields_list: field

| other_fields_list field

;

field: body_field

| action_field

| context_field

| setting_field

| properties_field

| documentation_field

| effects_field

;

invocation_field: TFT_INVOCATION_TK invocation

;

context_field: TFT_CONTEXT_TK context

;

setting_field: TFT_SETTING_TK setting

;

properties_field: TFT_PROPERTIES_TK properties

;

documentation_field: TFT_DOCUMENTATION_TK documentation

;

effects_field: TFT_EFFECTS_TK effects

;

action_field: TFT_ACTION_TK action

;

body_field: TFT_BODY_TK body

;

body: OP_TK list_inst CP_TK

;

list_inst:

| list_inst inst

;

374APPENDIX K. GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT

inst: top_gtexpr

| if_inst

| while_inst

| do_inst

| par_inst

| comment

| goto_inst

| label_inst

| break_inst

;

top_gtexpr: gtexpr

;

comment: COMMENT_TK

;

goto_inst: GOTO_TK SYMBOL_TK

;

label_inst: LABEL_TK SYMBOL_TK

;

break_inst: BREAK_TK

;

if_part_inst: gtexpr list_inst

| gtexpr list_inst ELSE_TK list_inst

| gtexpr list_inst ELSEIF_TK if_part_inst

;

if_inst: OP_TK IF_TK if_part_inst CP_TK

;

while_inst: OP_TK WHILE_TK gtexpr list_inst CP_TK

;

do_inst: OP_TK DO_TK list_inst WHILE_TK gtexpr CP_TK

;

par_inst: OP_TK PAR_TK body_list CP_TK

;

body_list:

| body_list body

;

K.1. SYNTAXIC GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT375

gmexpr: lmexpr

| mexpr

;

lmexpr:

OP_TK META_NOT_TK gmexpr CP_TK

| OP_TK META_OR_TK list_gmexpr CP_TK

| OP_TK META_AND_TK list_gmexpr CP_TK

;

list_gmexpr:

gmexpr

| list_gmexpr gmexpr

;

mexpr:

gexpr

| gtexpr

;

gtexpr:

ltexpr

| texpr

;

ltexpr:

OP_TK NOT_TK gtexpr CP_TK

| OP_TK OR_TK list_gtexpr CP_TK

| OP_TK AND_TK list_gtexpr CP_TK

;

list_par_gtexpr:

OP_TK list_gtexpr CP_TK

| OP_TK CP_TK

;

list_gtexpr:

gtexpr

| list_gtexpr gtexpr

;

texpr:

OP_TK temp_op gexpr CP_TK

;

376APPENDIX K. GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT

temp_op:

WAIT_TK

| ACHIEVE_TK

| MAINTAIN_TK

| PRESERVE_TK

| TEMP_CONCLUDE_TK

| RETRACT_TK

| TEST_TK

;

gexpr:

lexpr

| expr

| variable

;

lexpr:

OP_TK NOT_TK OP_TK OR_TK list_gexpr CP_TK CP_TK

| OP_TK NOT_TK OP_TK AND_TK list_gexpr CP_TK CP_TK

| OP_TK OR_TK list_gexpr CP_TK

| OP_TK AND_TK list_gexpr CP_TK

;

list_gexpr:

gexpr

| list_gexpr gexpr

;

expr:

OP_TK predicate term_list CP_TK

| OP_TK NOT_TK OP_TK predicate

term_list CP_TK CP_TK

| OP_TK NOT_TK OP_TK NOT_TK OP_TK

predicate term_list CP_TK CP_TK CP_TK

;

predicate:

SYMBOL_TK

;

function:

SYMBOL_TK

;

term_list:

| term_list term

K.2. LEXICAL GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT377

;

file_name: QSTRING_TK

;

term:

INTEGER_TK

| POINTER_TK

| REAL_TK

| QSTRING_TK

| SYMBOL_TK

| variable

| OP_TK function term_list CP_TK

| OP_TK var_list CP_TK

| OP_LISP_TK term_list CP_LISP_TK

| OP_ARRAY_TK term_list CP_ARRAY_TK

| gtexpr

| lexpr

;

var_list:

variable

| var_list variable

;

variable:

LOGICAL_VAR_TK

| PROGRAM_VAR_TK

;

property:

OP_TK prop_name term CP_TK

;

prop_name:

SYMBOL_TK

;

K.2 Lexical Grammar Used in the OPRS De-
velopment Environment

Here is the lex-style token grammar used in the different parsers of the OPRS
Development Environment.

ws [\t]+

378APPENDIX K. GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT

real [-\+]?[0-9]+\.[0-9]*

exp [eE][-\+]?[0-9]+

integer [-\+]?[0-9]+

pointer 0x[0123456789abcdefABCDEF]+

comment ;.*$

qstring \"([^"]|\\["])*\"

id ([^ \t\n~0123456789"&\(\)\$@;\|\.[:\]][^ \t\n"\(\)\]]*)

numberid ([^ \t\n"&\(\)\$@;\|\.\]][^ \t\n"\(\)\]]*)

idbar (\|[^|]+\|)

nl \n

or V

and &

op \(

cp \)

opar \[

cpar \]

oplisp \(\.

cplisp \.\)

lvar \${numberid}

pvar @{numberid}

gpvar @@{numberid}

{ws} ;

:[Ii][Nn][Vv][Oo][Cc][Aa][Tt][Ii][Oo][Nn]

{return TFT_INVOCATION_TK;}

:[Bb][Oo][Dd][Yy]

{return TFT_BODY_TK;}

:[Cc][Oo][Nn][Tt][Ee][Xx][Tt]

{return TFT_CONTEXT_TK;}

:[Ss][Ee][Tt][Tt][Ii][Nn][Gg]

{return TFT_SETTING_TK;}

:[Pp][Rr][Oo][Pp][Ee][Rr][Tt][Ii][Ee][Ss]

{return TFT_PROPERTIES_TK;}

:[Dd][Oo][Cc][Uu][Mm][Ee][Nn][Tt][Aa][Tt][Ii][Oo][Nn]

{return TFT_DOCUMENTATION_TK;}

:[Ee][Ff][Ff][Ee][Cc][Tt][Ss]

{return TFT_EFFECTS_TK;}

:[Aa][Cc][Tt][Ii][Oo][Nn]

{return TFT_ACTION_TK;}

[Dd][Ee][Ff][Kk][Aa]

{return DEFOP_TK;}

\/\/

{return PAR_TK;}

[Ww][Hh][Ii][Ll][Ee]

K.2. LEXICAL GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT379

{return WHILE_TK;}

[Dd][Oo]

{return DO_TK;}

[Ii][Ff]

{return IF_TK;}

[Ee][Ll][Ss][Ee]

{return ELSE_TK;}

{comment}

{return COMMENT_TK;}

[Aa][Nn][Dd]

{return META_AND_TK;}

[Oo][Rr]

{return META_OR_TK;}

[Nn][Oo][Tt]

{return META_NOT_TK;}

^\.\n

{return RESET_DOT_TK;}

{real} |

{real}{exp}

{return REAL_TK;}

{pointer}

{return POINTER_TK;}

{integer}

{return INTEGER_TK;}

{qstring}

{return QSTRING_TK;}

|| {return OR_TK;}

& {return AND_TK;}

~ {return NOT_TK;}

{lvar} {return LOGICAL_VAR_TK;}

{pvar} {return PROGRAM_VAR_TK;}

{gpvar} {return PROGRAM_VAR_TK;}

=> |

[Cc][Oo][Nn][Cc][Ll][Uu][Dd][Ee]

{return TEMP_CONCLUDE_TK;}

~> |

[Rr][Ee][Tt][Rr][Aa][Cc][Tt]

{return RETRACT_TK;}

! |

380APPENDIX K. GRAMMARUSED IN THE OPRS DEVELOPMENT ENVIRONMENT

[Aa][Cc][Hh][Ii][Ee][Vv][Ee]

{return ACHIEVE_TK;}

\? |

[Tt][Ee][Ss][Tt]

{return TEST_TK;}

|

[Pp][Rr][Ee][Ss][Ee][Rr][Vv][Ee]

{return PRESERVE_TK;}

\^ |

[Ww][Aa][Ii][Tt]

{return WAIT_TK;}

\% |

[Mm][Aa][Ii][Nn][Tt][Aa][Ii][Nn]

{return MAINTAIN_TK;}

{oplisp} {return OP_LISP_TK;}

{cplisp} {return CP_LISP_TK;}

{opar} {return OP_ARRAY_TK;}

{cpar} {return CP_ARRAY_TK;}

{id} {return SYMBOL_TK;}

{idbar} {return SYMBOL_TK;}

{op} {return OP_TK;}

{cp} {return CP_TK;}

Appendix L

Xt/Motif Widgets
Hierarchy and Resources

Motif and Xt allow the user to set most widget resource values using the resource
file (see the X11 [Sta91b] and Xt [Sta91a] documentation for more on this topic).
X-OPRS and the OP Editor takes advantage of this mechanism as much as
possible. In fact, as few as possible resource values are “hard wired” in the
code, and most of them are set in the ‘XOprs’ and ‘Op-editor’ resources files.
To take full advantage of this mechanism, the user needs to know the widget
hierarchy of the application. The versions of the X-OPRS and the OP Editor
which are based on X11R5/Xt/Motif 1.2 can even take advantage of the new
resource protocol which allows the user to interactively set resource values. The
user can thus make a lot of customization using resource setting.

Since version 1.3.1, OPRS offers support for different language (French and
English). Thus the proper selection of the application default file is very im-
portant. A priori, if no application file is found, the default language resources
value are stored in the kernel.

For each X application (X-OPRS and the OP Editor) , the ‘app-defaults’
directory contains 3 files. For example, for X-OPRS, it contains ‘XOprs-fr’,
‘XOprs-en’ and ‘XOprs’ (which is a link on one of the two first file). A priori,
you need to tell X where are the application defaults file are located. This can
be done using the variable XFILESEARCHPATH.

setenv OPRSDIR /usr/local/oprs

if ($?XFILESEARCHPATH) then

setenv XFILESEARCHPATH "${XFILESEARCHPATH}:${OPRSDIR}/%T/%N%C"

else

setenv XFILESEARCHPATH "${OPRSDIR}/%T/%N%C"

endif

The %C (for customization) is supported in X11 since release 5. Basically,
if you have, for an application app name with app name class as application

381

382APPENDIX L. XT/MOTIF WIDGETS HIERARCHY AND RESOURCES

Option String Resource Name Argument Kind Resource Value
-background *background SepArg next argument
-bd *borderColor SepArg next argument
-bg *background SepArg next argument
-borderwidth .borderWidth SepArg next argument
-bordercolor *borderColor SepArg next argument
-bw .borderWidth SepArg next argument
-display .display SepArg next argument
-fg *foreground SepArg next argument
-fn *font SepArg next argument
-font *font SepArg next argument
-foreground *foreground SepArg next argument
-geometry .geometry SepArg next argument
-iconic .iconic NoArg “true”
-name .name SepArg next argument
-reverse .reverseVideo NoArg “on”
-rv .reverseVideo NoArg “on”
+rv .reverseVideo NoArg “off”
-selectionTimeout .selectionTimeout SepArg next argument
-synchronous .synchronous NoArg “on”
+synchronous .synchronous NoArg “off”
-title .title SepArg next argument
-xnllanguage .xnlLanguage SepArg next argument
-xrm next argument ResArg next argument

Table L.1: Xt Application Default Line Arguments and Resources

class, a app name class.customization: res-value resource defined in your
‘.Xresources’ or ‘.Xdefault’ files (i.e. already defined in the resource manager of
your X server), then when you launch application app-name, it will look for an
application default file with the name %N%C, i.e. app name class concatenated
with res-value.

So if you define XOprs.customization: -en, it will load ‘XOprs-en’, while
if you define XOprs.customization: -fr, it will load ‘XOprs-fr’. If none are
defined, it will load ‘XOprs’. This mechanism is the same for the Op-editor.
This mechanism will allow you to automatically select the language of the in-
terface.

Note that each application file contains a *.language resource which is used
by the application to then select the proper string when these are not defined a
X resources.

L.1. XT COMMAND LINE ARGUMENTS 383

L.1 Xt Command Line Arguments

There are a number of arguments and resources which are defined by default
for any Xt based application. These are indeed available for the X-OPRS ap-
plication and the OP Editor application. Table L.1 presents these arguments.
See [Sta91a] for more information on this subject.

Example:

op-editor -iconic

xoprs -bg blue

L.2 X-OPRS Motif Widgets Hierarchy and Re-
sources

L.2.1 How to Connect your Own Widget in X-OPRS

You can if you want connect you own widget or widget tree to the X-OPRS
one. They will be treated by the X-OPRS Kernel as any other widget. You can
then manage them or unmanage them from your OPs. However, you should not
make active wait (by starting recursively a Xt Main Loop...) or you will most
likely block the X-OPRS Kernel.

x oprs top level widget Kernel Variable

extern Widget x oprs top level widget see [Important Variables],
§G.1.2, page 334

void start_kernel_user_hook()

{

intention_scheduler = &intention_scheduler_time_sharing;

create_my_widget_tree(x_oprs_top_level_widget);

}

L.2.2 X-OPRS Resources

Specific X-OPRS resources can be set by the user:

XOprs.fontList: variable=variable_cs,\

fixed=default_cs,\

variable=text_title_cs,\

-adobe-helvetica-bold-r-normal-*-24-*-*-*-*-*-*-*=title_cs,\

fixed=text_cs,\

-adobe-helvetica-bold-r-normal-*-*-100-*-*-*-*-*-*=node_cs,\

6x12=edge_cs

XOprs.defaultFontList: variable=variable_cs,\

fixed=fixed_cs

XOprs.ipX: 10

384APPENDIX L. XT/MOTIF WIDGETS HIERARCHY AND RESOURCES

XOprs.ipY: 50

XOprs.ipWidth: 80

XOprs.ctxtX: 10

XOprs.ctxtY: 150

XOprs.ctxtWidth: 60

XOprs.setX: 10

XOprs.setY: 250

XOprs.setWidth: 60

XOprs.effX: 10

XOprs.effY: 350

XOprs.effWidth: 60

XOprs.propX: 10

XOprs.propY: 400

XOprs.propWidth: 60

XOprs.docX: 10

XOprs.docY: 450

XOprs.docWidth: 60

XOprs.actX: 310

XOprs.actY: 50

XOprs.actWidth: 60

XOprs.bdX: 310

XOprs.bdY: 50

XOprs.bdWidth: 120

XOprs.edgeWidth: 40

The XOprs.fontList resource defines the fonts which are used in the fol-
lowing character set:

title cs is the character set used to name the OP which appear in the top left
corner.

text title cs is the character set used to name text fields like INVOCATION,

CONTEXT, etc.

text cs is the character set used for the text contained in the text field.

node cs is the character set used for the name of the node.

edge cs is the character set used for the edge text.

L.2.3 X-OPRS Motif Widgets Hierarchy

The widget hierarchy for the X-OPRS program can now be obtained by issuing
the command:

xoprs -pwt

Each widget is given with its path from the root and with its class name in
parenthesis.

L.3. OP EDITOR MOTIF WIDGETS HIERARCHY AND RESOURCES385

L.3 OP Editor Motif Widgets Hierarchy and Re-
sources

L.3.1 OP Editor Resources

The OP Editor has a number of resource which can be set by the user:

Op-editor.fontList: variable=variable_cs,\

fixed=default_cs,\

-adobe-helvetica-bold-r-normal-*-24-*-*-*-*-*-*-*=title_cs,\

variable=text_title_cs,\

fixed=text_cs,\

-adobe-helvetica-bold-r-normal-*-*-100-*-*-*-*-*-*=node_cs,\

6x12=edge_cs

Op-editor.defaultFontList: variable=variable_cs,\

fixed=fixed_cs

!

! Default value for the size of the drawing area

!

Op-editor.workWidth: 2000

Op-editor.workHeight: 1500

!

! Default value for the x, y and with

! of the various OP fields. These values

! are the one used for the Text OP.

!

Op-editor.ipX: 10

Op-editor.ipY: 50

Op-editor.ipWidth: 80

Op-editor.ctxtX: 10

Op-editor.ctxtY: 150

Op-editor.ctxtWidth: 60

Op-editor.setX: 10

Op-editor.setY: 250

Op-editor.setWidth: 60

Op-editor.effX: 10

Op-editor.effY: 350

Op-editor.effWidth: 60

Op-editor.propX: 10

Op-editor.propY: 400

Op-editor.propWidth: 60

Op-editor.docX: 10

Op-editor.docY: 450

Op-editor.docWidth: 60

Op-editor.actX: 310

Op-editor.actY: 50

386APPENDIX L. XT/MOTIF WIDGETS HIERARCHY AND RESOURCES

Op-editor.actWidth: 60

Op-editor.bdX: 310

Op-editor.bdY: 50

Op-editor.bdWidth: 120

Op-editor.edgeWidth: 40

!

! Default print command

!

! This one is for A4 if you have the most recent pbm pacopge.

Op-editor.printCommand: xwdtopnm < \%s | pnmtops -r -w 8 -h 11.25 | lpr

! For us letter

!Op-editor.printCommand: xwdtopnm < %s | pnmtops -r | lpr

The Op-editor.fontList resource defines the fonts which are used in the
following character set:

title cs is the character set used for the name of the OP which appear in the
top left corner.

text title cs is the character set used for the name of text fields like INVOCATION,
CONTEXT, etc.

text cs is the character set used for the text contained in the text field.

node cs is the character set used for the name of the node.

edge cs is the character set used for the edge text.

The Op-editor.printCommand resource defines the shell command used by
the various print commands of the OP Editor.

The Op-editor.workWidth and Op-editor.workHeight resource defines
the width and the height of the drawing canvas. These values can be changed
with the “Change Drawing Size” command, See [Change Drawing Size], §16.1.4,
page 230.

L.3.2 OP Editor Motif Widgets Hierarchy

The widget hierarchy for the OP Editor program can now be obtained by issuing
the command:

op-editor -pwt

Each widget is given with its path from the root and with its class name in
parenthesis.

Appendix M

Known Problems and
Things to Avoid

Although our goal is to constantly improve the OPRS Development Environ-
ment, few problems have been reported by users or found by our development
team and, remain unsolved or unresolved. Most of them originate in mecha-
nisms, tools or systems which are not directly under our control (such as X11,
Motif or Unix).

In any case, bugs and problems should be reported to the following electronic
mail address:
felix@laas.fr.

M.1 Known Problems

1. There is a terrible memory leak in X11R4 which may make the X-OPRS
Kernel grows indefinitely. Here is the purify trace of this leak:

16 bytes (3874 times). Last memory leak at 0x779040

Purify (mlk): 61984 total bytes lost, allocated from:

malloc [p6.o, pc=0x46d4]

XtMalloc [Alloc.o, pc=0x1c8aec]

XtAppAddWorkProc [NextEvent.o, pc=0x1e8898]

register_main_loop_from_other_events [line 133, xp-main.c, pc=0x2e280]

register_main_loop [line 140, xp-main.c, pc=0x2e2b8]

DoOtherSources [NextEvent.o, pc=0x1e97a0]

2. All the modules with a graphic interface are written under X11/Motif.
Both X11R5/Motif1.2 and X11R4/Motif1.1.X versions are available. But
because of some weirdness with Sun OpenWindows 3.0 X server, the

387

388 APPENDIX M. KNOWN PROBLEMS AND THINGS TO AVOID

X11R5 version does not work. So you should not try to use it. (A patch
to Sun OpenWindows 3.0 exists which fixes this problem).

3. Due to some weird interaction between OpenLook Window Manager (olwm)
and Motif application, a number of things may not work as expected. It is
strongly recommended to use mwm (Motif Window Manager) as window
manager, or if not possible twm (the window manager distributed with
X11).

4. If Motif is not properly installed on your host, the application may not
works has expected. A very common problem is the lack of file ‘/usr/lib/X11/XKeysymDB’.
The symptom are very easy to identify. Whenever you start a Motif ap-
plication, you get a number of message stating that some Key Sym are
undefined. This problem is fixed in Motif 1.2 (there is now a variable
XKEYSYMDB for this purpose).

5. Using the OP Editor under twm, the Information Dialog which pops up
when OP files are loaded may not properly disappear after the load has
completed.

M.2 Things to Avoid

1. Remember that the word test is reserved (as are achieve, preserve, main-
tain, wait, conclude and retract), and cannot be used as a predicate name,
nor a symbol or a function.

2. Recursive data structures are currently forbidden for many different rea-
sons (printing problems in particular). So do not build structures which
point on themselves or you will most likely break the kernel. For example,
if foo is not an evaluable function, the following code will badly break
the kernel (or make it loop...) (! (= @x (foo @x))), while (! (= @x

(foo (val @x)))) will work, as it will use the value of @x instead of @x.

Appendix N

Glossary

Here is an alphabetical list of some words and concepts used in this manual and
which may have a particular meaning in OPRS.

Action: Actions are the basic operations in OPRS. They are the means by
which a OPRS Kernel or a X-OPRS Kernel modifies or acts on the external
world. Actions can be as simple as printing objects, or sending messages,
or complex as RPC or call to linked code. The user can define his own
actions.

Command mode: . A OPRS Kernel is usually in Run Mode. When the
OPRS-Server connects it, it switches to Command Mode (see also Run
Mode).

Conditions: . A condition is a particular statement the OPRS Kernel is peri-
odically checking. It can be a waiting condition (corresponding to a wait
goal in a OP) , or a preserve condition (corresponding to a passive or
active preserve in a OP).

OPRS Development Environment: The OPRS Development Environment
is the set of programs provided to develop an application using procedural
reasoning.

OPRS Application Environment: The OPRS Application Environment is
the set of programs provided to run an application using procedural rea-
soning.

OPRS Kernel: See Kernel.

Database: The database is where OPRS stores all the static information rep-
resenting the state of the world.

Binding Environment: Binding environments are OPRS structures which
hold the binding of a set of variables in a particular context.

389

390 APPENDIX N. GLOSSARY

Edge: The edges of the OPs are the links between the nodes of a OP. They are
labeled with goals (one goal per edge) which must be satisfied to allow the
transition between the two nodes linked by the edge.

Evaluable Function: Evaluable functions are functions which correspond to
machine executable code and are evaluated when needed. The main differ-
ence between actions and evaluable functions is that evaluable functions
appear as arguments of predicates, and can be evaluated a number of
times (depending of the Current/Quote setting). As a result, they should
not have any side effect which repetition could lead to unexpected results.
The user can define his own evaluable functions.

Evaluable Predicate: Evaluable predicates are predicates which are not stored
explicitly in the database but are evaluated executing some machine exe-
cutable code. The user can define his own evaluable predicates.

Fact: A fact is an expression which represents a true statement in the current
world state.

Frame: A Frame is a synonym for binding environment (see also Binding En-
vironment).

Goal: A goal is a statement and a temporal operator specifying how this state-
ment must be treated.

Include File: Include files are files containing commands to be executed by a
OPRS Kernel or a X-OPRS Kernel.

Intention: An intention or a task is a stack of procedures (calling each other)
and working towards the achievement of a goal or responding to the occur-
rence of an event. This goal or this event are responsible for the execution
of the first procedure in the stack.

Join Node: Join nodes are node corresponding to a synchronization point in
multi threads execution. The execution can proceed from a join node,
only when a number of threads equal to the number of incoming edges,
reached the join node.

OP: OP is more of an historical name. It means Knowledge Area, and was
used at the beginning of OPRS research probably to remind people of
other Knowledge constructions such as Knowledge Source used in Black
Board systems. See also Procedure.

OP Editor: The OP Editor is the program which allows the user to build his
own procedures, which can then be executed by a X-OPRS Kernel or
OPRS Kernel.

OP File: A OP file is a file containing a set of OPs. There are no particular
reasons to put some OPs and other together in the same file. However, it
is usually a good practice to break down the set of OPs used in a particular
application into various files.

391

OP Instance: A OP instance is a OP which is “applicable”, i.e. a OP for which
there is a binding environment currently satisfied. The same OP can have
more than one instances applicable at the same time (in which case, the
binding environments are different).

OP Library: The OP library is the set of OP loaded in a particular OPRS
Kernel or X-OPRS Kernel.

OP Predicate: A OP predicate is a predicate which can only be satisfied by
calling OPs. It is usually a good idea to declare OP predicates as it tends
to speed up the kernels (OP predicate are not checked in the database as
the system knows they can only be satisfied calling OPs).

Kernel: The OPRS Kernel or the X-OPRS Kernel are the kernels of the OPRS
Development Environment. However, the kernel part of both programs are
identical. This is the reason why we refer sometimes to them as the Kernel.
The Kernel is in fact the “brain” of the OPRS Development Environment.
In the OPRS Kernel environment, it displays information and results in
a standard tty interface. In the X-OPRS Kernel environment, it displays
graphical information and results in a X11/Motif environment. Besides,
this X11/Motif environment enables the user to interact with the kernel
in an easier way.

Message: A message is a fact sent to or receives by a OPRS Kernel (in fact
by any module of a OPRS application). Messages are identical to facts,
except that they come from outside, i.e. they are not concluded by the
OPRS Kernel itself but are received from outside.

Motif: Motif is a commercial product sold by Open Software Foundation. It is
a popular widget set (see Xt) which can be used to build high level user
interfaces with a consistent look and a uniform interaction mechanism
[Fou].

Node: The nodes are the building blocks of OPs. They are meant to present
states. When you have achieved a particular goal labeling an edge, you
end up on a new node representing the new state you have reached.

Plan: In this documentation, we use interchangeably the word OP, procedure
and even sometimes plan. See OP.

Procedure: In this documentation, we use interchangeably the word OP, pro-
cedure and even sometimes plan. See OP.

OPRS-Server: The OPRS-Server is used to start/kill OPRS Kernels and X-
OPRS Kernels and to interact with the OPRS Kernels.

Relevant OP: Relevant OPs are OPs which “mention” a particular fact or
goal in their invocation part.

392 APPENDIX N. GLOSSARY

Relocatable: A relocatable is a file containing linked code which can be re-
located by the linker. The OPRS Kernel and the X-OPRS Kernel are
distributed as pure executable but also as relocatable in which the final
user can link his own actions, evaluable functions and predicates and set
up a number of other important variables. The OPRS Development Envi-
ronment comes with two kinds of relocatable, one to link C code, and the
other to link C++ functions (in the later the main is called oprs main).

Run mode: A OPRS Kernel is in run mode when its main loop is executing.
See Command mode.

Split Node: A split node is the forking point in multi threads execution. When
execution reaches a split node, it forks as many threads as there are out-
going edges from this node.

Thread: Thread corresponds to an execution sequence in an intention. An
intention has always at least one thread. However, due to parallel split
operations in OPs, more than one thread can be active in an intention.

Unix: Unix is an operating system family with many members and branches.

Variable: A variable is a specific symbol which can be bound or not. When it
is, it is bound to a particular value which depends of the current binding
environment.

X Toolkit Intrinsics: The X Intrinsics is a library which provides high level
mechanism to build user interface. However, the X Intrinsics library does
not preclude any particular look and feel, or any particular manipulated
object. Moreover, the X Intrinsics by itself is not enough to build a user
interface, one needs to associate a widget set (such as the Athena widget
set, the Motif widget, or the Olit widget set, etc.) [Sta91a].

X11: X11 is a popular window system available on many platforms [Sta91b].

X-OPRS Kernel: See Kernel.

XInfo: XInfo is an info format displaying widget. It is used in the X application
of the OPRS Development Environment to display the manuals and the
documentation of the OPRS Development Environment.

Xt: See X Toolkit Intrinsics.

General Index

393

General Index

Achieve Operator, 53
Action Checking, 75
Action OPs, 68
Action Slicing, 143
Active Preserve Operator, 55
Add Fact or Goal, 183
Advanced Features, 135
Align Object, 237
Align Object Hor, 237
Align Object Vert, 237
Allocation Functions, 342
Append OP File, 221
Appendices, 283
APPLICABLE-OPS-FACT, 131
APPLICABLE-OPS-GOAL, 131
Applications of OPRS, 277
Argument of the Message Passer, 157
Argument of the Message Passer Killer,

158
Argument of the OP Compiler, 207
Arguments of the OP Editor, 213
Arguments of the OPRS-Server, 149
Arguments to the oprs Command,

22
Arithmetic Evaluable Functions, 96
Arithmetic Evaluable Predicates, 88
Array Manipulation Actions, 116
Array Manipulation Evaluable Func-

tions, 97
Array Manipulation Functions, 336
Array of Floats as a Term, 50
Array of Integers as a Term, 50
Assert Operator, 56

Badly Formed Goals, 241
Basic Events, 86

Binding Environments, 52
Bugs, 387

C List as a Term, 51
C++ Relocatables, 303
Change Drawing Size, 230
Change Print Command, 230
Change Size Text Pane, 201
Change Visible Fields, 232
Changes Between Version 1.0 and

Version 1.1, 289
Changes Between Version 1.1 and

Version 1.2, 290
Changes Between Version 1.2 and

Version 1.3, 293
Changes Between Version 1.3 and

Version 1.4, 297
Changes in the Commands Syntax

of the OPRS Kernel, 290
Changes in the OP Representation,

127
Clear Intention Graph Pane, 201
Clear OP Buffer, 230
Clear OP Pane, 200
Clear Text Pane, 200
Closed World Predicates, 81
Command Index, 395
Command Mode, 26
Commands Equivalence between the

OPRS Kernel and the X-
OPRS Kernel, 305

Commands of the OPRS-Server, 150
Comment Instruction, 74
Common Mistakes, 264
Complex OPRS Applications, 269
Composed Term as a Term, 49

394

GENERAL INDEX 395

Conclude, 79
Conclude Fact Database, 185
Conclude Operator, 56
Consult Applicable OP, 191
Consult Fact Database, 190
Consult Relevant OP, 190
Consultation, 79
Context Part, 60
Control and Status Panel, 201
Control Button Menu, 202
Convert End, 236
Convert Start, 237
Copy OP in Buffer, 229
Create Edge, 235
Create If Node, 235
Create Knot, 235
Create Node, 234
Create OP, 223
Creating a OP, 216
Critical Section, 142
Current and Quote, 141

Data and Commands, 262
Data Structures and Types Used,

333
Database, 77
Database File Format, 77
Database Organization, 280
DECISION-PROCEDURE Property,

132
Default OPs, 309
Delete a OP, 185
Delete Fact Database, 185
Description of the Distribution, 365
Destroy A OP, 227
Destroy Current OP, 227
Destroy Object, 237
Display a Particular OP, 200
Display Menu, 200
Display Next OP, 200
Display Previous OP, 200
Do You Need Meta Level?, 262
DO-WHILE Instruction, 73
Documentation Part, 61
Dump Database, 182
Dump Kernel, 183

Dump OP, 183
Dump OP Pixmap to File, 225
Duplicate Objects, 236
Duplicate OP, 223

Edit Menu of the OP Editor, 222
Edit Object, 236
Editing an Existing OP, 216
Effects Part, 61
Empty Fact Database, 187
Empty OP Library, 187
Ending User Hook, 135
Environment Variables, 24
Error Handler, 136
Errors Reported by the Message Passer,

168
Errors Reported by the OP Com-

piler, 208
Evaluable Function and Action In-

dex, 397
Evaluable Functions, 95
Evaluable Predicate Index, 399
Evaluable Predicates, 87
Example of C Code to Connect to

the Message Passer, 162
Example of Lisp Code to Connect to

the Message Passer, 165
Example Procedure/OP in OPRS,

9
Examples, 361
Execution Part, 62
Expression Compilation, 75
Expression Parsing, 75

Fact and Goal Manipulation Func-
tions, 337

Fact and Goal Related Evaluable Func-
tions, 99

Fact Invoked OPs, 258
FACT Meta Expressions, 56
Fact Posting Functions, 338
FACT-INVOKED-OPS, 131
Factorial Example, 265
Factorial Example OPs, 265
Facts, 57
Fibonacci OPs, 362

396 GENERAL INDEX

File Menu, 179
File Menu of the OP Editor, 219
Flip Conj/Disj In, 235
Flip Conj/Disj Out, 235
Float as a Term, 48
Footer and Dialog Box Help, 217
Forbidden Things and Things to Avoid

with the Database, 257
Frames, 52
Frames and Binding Environments,

52
Function Checking, 76
Functional Facts, 84

General Expressions, 52
General Index, 393
General Meta Expressions, 56
General Presentation of the Text OPs,

71
General Temporal Expressions, 53
Getting Started, 249
Getting Started with the OP Edi-

tor, 249
Getting Started with the X-OPRS

Kernel, 250
Gexpression as a Term, 49
GGRAPH Format, 239
Global Variables, 47
Glossary, 389
Goal Building Evaluable Functions,

107
Goal Commitment, 124
Goal Invoked OPs, 258
GOAL Meta Expressions, 57
GOAL-INVOKED-OPS, 131
Goals, 58
GOTO-LABEL Instruction, 74
Grammar Used in the OPRS Devel-

opment Environment, 45,
371

Graph OP, 62
Graph OP Traversal, 124
Graphic Intention Pane, 178
Graphic OP Pane, 178
Grasper Graph Incompatibilities, 240
Gtexpression as a Term, 49

Hardware and Software Dependan-
cies, 301

How Many OPRS Kernels Does it
Takes to Screw a Light Bulb?,
253

How to Connect to a OPRS Kernel,
26

How to Connect to the Message Passer
from OPRS-Server and OPRS
Kernel, 159

How to Connect to the Message Passer
from an External Module,
159

How to Connect your Own Widget
in X-OPRS, 383

How to Define your Own Actions,
122

How to Define your Own Evaluable
Functions, 107

How to Define your Own Evaluable
Predicates, 92

How to Get Grasper Graph on your
Lisp Machine, 240

How to Install the OPRS Develop-
ment Environment, 365

How to Install the Truck Loading
Demo, 271

How to Kill an OPRS Kernel, 25
How to Run the Truck Loading Demo,

271
How to Start, 249
How to Start a OPRS Kernel, 21
How to Start the X-OPRS Kernel,

175
How to Use the OP Compiler, 207
How to Use the OP Editor, 213
How to Use the OPRS-Server, 149
How to Use the X-OPRS Kernel,

175
How to Use the Message Passer, 157
How to Use the OPRS Kernel, 21

IF-THEN-ELSE Instruction, 72
IF-THEN-ELSE Node, 62
Important Constants, 336
Important Variables, 334

GENERAL INDEX 397

Include, 179
Include File Format, 43
Input Actions, 116
Inspect Menu, 187
Installation for Binary License, 369
Installation for Demonstration Li-

cense, 369
Installation for Source License, 369
Integer as a Term, 47
Intending Goal Actions, 118
Intending Goals Directly, 140
Intending OP, 114
Intending OP Instance Actions, 117
Intention Graph, 109
Intention Graph Manipulation, 262
Intention Graph Manipulation Func-

tions, 342
Intention Graph Scheduling, 138
Intention Graph Sorting Predicate,

139
Intention Manipulation Functions, 340
Intention Related Evaluable Func-

tions, 100
Intentions Manipulation Actions, 119
Introduction to the Message Passer,

155
Introduction to the OP Compiler,

205
Introduction to Using OPRS, 245
Invocation Part, 60

Just the Right Level of Meta Level,
280

Kernel Function Index, 401
Kernel Functions, 333
Known Bugs, 387
Known Problems, 387
Known Problems and Things to Avoid,

387

Last Selected OPs, 229
Lexical Grammar Used in the OPRS

Development Environment,
377

liblist.a library, 346

Library and Kernel Functions, 333
Licensing Information, 3
Linking C Code in the Kernels, 263
Lisp and Lisp-like Functions, 357
Lisp Evaluable Functions, 102
Lisp Functions, 357
Lisp List as a Term, 49
Lisp’isms, 357
LISP LIST, 357
LISP LIST Manipulation Functions,

345
LISP LIST manipulation OPs, 362
List Action, 192
List All, 191
List Basic Event Predicate, 192
List Closed World Predicate, 191
List Evaluable Function, 192
List Evaluable Predicate, 191
List Function, 192
List Functional Fact Predicate, 192
List Loaded OP Files, 181
List Loaded OPs, 192
List OP Predicate, 192
List Predicate, 191
List Submenu, 191
Load Database, 180
Load Dump Database, 180
Load Dump Kernel, 181
Load Dump OP, 181
Load Grasper OP File, 221
Load OP File, 219
Load Sun OP File, 221
Logical Variables, 46
Long long integer as a Term, 47

Main Changes Between Version 1.3
and Version 1.4, 297

Menu, 179
Menubar, 179
Menubar of the OP Editor, 219
Merge Node, 236
Message Example, 361
Message Example OPs, 361
Message Passer Kernel Environment

Variables, 158

398 GENERAL INDEX

Message Passer Killer Kernel Envi-
ronment Variables, 159

Message Passing, 125
Messages, 57
Messages Format, 161
Meta Level Reasoning, 131
meta-intended-goal.opf, 325
Misc Menu, 230
Miscellaneous Actions, 121
Miscellaneous Changes Between Ver-

sion 1.1 and Version 1.2,
290

Miscellaneous Changes Between Ver-
sion 1.2 and Version 1.3,
293

Miscellaneous Changes Between Ver-
sion 1.3 and Version 1.4,
298

Miscellaneous Evaluable Functions,
105

Miscellaneous Evaluable Predicates,
90

Miscellaneous Kernel Functions, 345
Miscellaneous Questions, 264
Mode Menu, 232
Move Objects, 234
Multi Threads Execution, 112
Multi Variable Special Action, 70

Negation as Failure, 240
New Graph OP Construction, 62
New OP File, 221
New Traces and New Options, 129
new-default.opf, 309
new-meta-ops.opf, 329
Next OP, 227

OP Applicability, 114
OP Applicability Fields, 59
OP Compiler Kernel Environment

Variables, 208
OP Editor Commands, 219
OP Editor Help Menu, 233
OP Editor Kernel Environment Vari-

ables, 215

OP Editor Motif Widgets Hierarchy,
386

OP Editor Motif Widgets Hierarchy
and Resources, 385

OP Editor Resources, 385
OP File Format, 239
OP Instance Manipulation Functions,

341
OP Instance Related Evaluable Func-

tions, 98
OP Instance Related Evaluable Pred-

icates, 89
OP Manipulation Functions, 341
OP Menu, 222
OP Other Fields, 61
OP Predicates, 93
OP Properties, 135
OP Semantics, 59
OP Structure Manipulation Func-

tions, 341
OP Syntax, 59
OP Syntax and Semantics, 59
OP Trace/Step, 196
Open Node, 234
OPF Format, 239
OPRS Development Environment Overview,

7
OPRS Kernel, 19
OPRS Kernel Commands, 29
OPRS Kernel Compiler/Parser Op-

tion Commands, 36
OPRS Kernel Database Commands,

30
OPRS Kernel Declaration Commands,

37
OPRS Kernel Dumping/Loading Com-

mands, 39
OPRS Kernel Environment Variables,

24
OPRS Kernel Listing Commands, 38
OPRS Kernel Loading Commands,

32
OPRS Kernel Main Loop, 113
OPRS Kernel Meta Level Option Com-

mands, 35

GENERAL INDEX 399

OPRS Kernel Miscellaneous Com-
mands, 42

OPRS Kernel OP Library Commands,
31

OPRS Kernel over Network, 25
OPRS Kernel parser, 29
OPRS Kernel Run Option Commands,

34
OPRS Kernel Status and Control

Commands, 41
OPRS Kernel Trace Commands, 33
OPRS Kernels or X-OPRS Kernels,

254
Oprs Manipulation Functions, 336
OPRS Menu, 183
OPRS Menu Compiler/Parser Op-

tion, 198
OPRS Menu Meta Level Option, 199
OPRS Menu Run Option, 196
OPRS Server Commands to Handle

OPRS Kernel, 150
OPRS Server Communication Com-

mands, 151
OPRS Server Miscellaneous Commands,

152
OPRS Trace, 193
OPRS-Server, 147
OPRS-Server Environment Variables,

150
OPRS DATA PATH, 24, 175, 208
OPRS DOC DIR, 24, 176, 215
OPRS ID CASE, 25, 150, 176, 215
OPRS MP HOST, 24, 150, 159, 176
OPRS MP PORT, 24, 150, 158, 159,

176
OPRS SERVER HOST, 24, 176
OPRS SERVER PORT, 24, 150, 176
Optimizing an OPRS Applications,

279
Optimizing Hashtables, 279
Option Menu, 196
Other Aspects of the Meta Level,

133
Other Factorial Example OPs, 267
Other Objects as Term, 51
Overall Description of OPRS, 8

Overview of the Message Passer, 155
Overview of the OP Compiler, 205
Overview of the OP Editor, 211
Overview of the OPRS-Server, 147
Overview of the X-OPRS Kernel, 173
Overview of the OPRS Development

Environment, 7
Overview of the OPRS Kernel, 19

Panes of the X-OPRS Kernel, 177
Parallel Execution of OPs in OPRS,

127
Parallel Fibonacci OPs, 363
Parallel Instruction, 74
Passive Preserve Operator, 55
Paste OP from Buffer, 229
Performance Considerations, 130
Predefined Actions, 115
Predefined Evaluable Functions, 95
Predefined Evaluable Predicates, 88
Predefined OPs, 259
Predicate Checking, 75
Pretty Printing, 217
Previous OP, 227
Principal Differences Between C-PRS

and OPRS, 283
Principal Differences Between Sub-

sequent Versions of C-PRS,
289

Principal Differences with SRI PRS,
285

Print OP, 225
Print OP File, 222
Printing Actions, 115
Procedural Reasoning, 7
Procedure and Expression Compila-

tion and Parsing, 75
Procedure Compilation, 75
Procedure Execution and Run Time,

109
Procedure Parsing, 75
Program Variables, 46
Properties, 52
Properties in OP, 135
Properties Part, 61

400 GENERAL INDEX

Quit, 222

Registration and Communication Func-
tions, ‘libmp.a’, 346

Relevant OP, 237
Reload OP File, 181
Rename OP, 225
Resources, 383, 385
Retract Operator, 56
Run Mode, 26
Run Time, 109

Save Database, 182
Save OP File, 221
Scroll Bars, 216
Select OP, 223
Select OP File, 222
Selection Pane, 216
Semantics Used in the OPRS Devel-

opment Environment, 45
semaphore.opf, 330
Setting Part, 60
Setting Up an OPRS Application,

253
Setting Up your Environment, 247
SGRAPH Format, 241
Show Conditions, 188
Show Database, 187
Show Global Variables, 188
Show Intentions, 188
Show Memory Usage, 190
Simple OPRS Applications, 265
Slicing your Action, 280
SOAK, 131
SOAK and other Meta Facts, 131
SparcStation, 303
Special Action, 69
Special Symbols, 51
Split and Join Node, 65
Standard Action, 69
Standard Lisp Functions, 358
Starting User Hook, 135
Stat All Hashtables, 193
Stat Database Hashtables, 192
Stat Symbol Hashtable, 192
Status Panel, 202

String as a Term, 48
Symbol as a Term, 48
Symbol Checking, 76
Symbols List, 230
Syntax and Semantics Used in the

OPRS Development Envi-
ronment, 45

Syntax Used in the OPRS Develop-
ment Environment, 45

Syntaxic Grammar Used in the OPRS
Development Environment,
371

Terms, 47
Test Examples, 362
Test Operator, 54
Text OPs, 70
Text Pane, 177
The OPRS Application Environment,

13
The OPRS Development Environ-

ment, 11
The Database: Facts, Only the Facts,

255
The Representation of Facts in the

Database, 255
The Structure of this Manual, 13
Things to Avoid, 388
Time Related Evaluable Functions,

101
Time Related Evaluable Predicates,

89
Toggle selected OPs, 229
Trace, 193
Trace Menu, 193
Truck Loading Example, 269
Truck Loading Example OPs, 272
Truck Loading Example Presenta-

tion, 269

Unification, 78
Universal Quantification of Variables,

142
Unload OP File, 222
Unrecognized Symbol, 240
User Code Error Handler, 136

GENERAL INDEX 401

User Defined Actions, 260
User Defined Evaluable Functions,

259
User Defined Evaluable Predicates,

260
User Hooks, 135
User Pointers, 142
User Pointers as a Term, 50
Using OPRS, 245
Using Action OPs, 114
Using the OP Compiler, 208

Variable as a Term, 48
Variable Index, 403
Variable List as a Term, 48
Variables, 45
VxWorks, 301

Wait Operator, 54
Wait OPs, 362
What is Procedural Reasoning?, 7
Where to Start, 249
Which OP for Which Task?, 258
Which Predicate Should be Declared

as Basic Events?, 257
Which Predicate Should be Declared

as Functional Facts?, 257
Which Predicate?, 256
Which Predicates Should be Declared

as Closed World Predicates?,
256

WHILE Instruction, 73
Windows 95, 303
Windows and Panes of the X-OPRS

Kernel, 177
Windows NT, 303
Windows of the X-OPRS Kernel, 177
Windows95-NT, 303
Working Menu Items, 233
Write OP File, 221
Write TeX Doc File, 222
Writing Meta Level OPs, 132

X-OPRS Help Menu, 201
X-OPRS Kernel Environment Vari-

ables, 175

X-OPRS Load OP File, 180
X-OPRS Motif Widgets Hierarchy,

384
X-OPRS Motif Widgets Hierarchy

and Resources, 383
X-OPRS Quit, 183
X-OPRS Resources, 383
X-OPRS Unload OP File, 182
Xt Command Line Arguments, 383
Xt Resources, 383, 385
Xt/Motif Widgets Hierarchy and Re-

sources, 381

402 GENERAL INDEX

Command Index

403

User Commands Index

accept (oprs-server), 151
add (oprs), 42
add (oprs-server), 151

broadcast (oprs-server), 151

conclude (oprs), 30
connect (oprs-server), 151
consult (oprs), 30
consult applicable op (oprs), 32
consult relevant op (oprs), 31

declare be (oprs), 37
declare cwp (oprs), 37
declare ff (oprs), 37
declare function (oprs), 37
declare id (oprs), 37
declare op predicate (oprs), 37
declare predicate (oprs), 37
delete (oprs), 30
delete op (oprs), 31
delete opf (oprs), 31, 33
disconnect (oprs), 42, 151
dump all opf (oprs), 40
dump db (oprs), 40
dump kernel (oprs), 40
dump op (oprs), 40

echo (oprs), 42
empty fact db (oprs), 30
empty op db (oprs), 33
exit (oprs), 43
exit (oprs-server), 152

halt (oprs), 41
help (oprs), 43
help (oprs-server), 152

include (oprs), 32
include (oprs-server), 152

kill (oprs-server), 150

list action (oprs), 38
list all (oprs), 38
list be (oprs), 38
list cwp (oprs), 38
list evaluable function (oprs), 38
list evaluable predicate (oprs), 38
list ff (oprs), 38
list function (oprs), 38
list op (oprs), 31
list op predicate (oprs), 38
list opf (oprs), 31
list predicate (oprs), 38
load db (oprs), 30, 32
load dump db (oprs), 40
load dump op (oprs), 40
load external (oprs), 43
load kernel (oprs), 40
load opf (oprs), 33

make (oprs-server), 150
make x (oprs-server), 150

next (oprs), 41

op-editor command, 213
oprs command, 22
oprs-server command, 149

q (oprs), 43
q (oprs-server), 152
quit (oprs), 43
quit (oprs-server), 152

404

USER COMMANDS INDEX 405

reload opf (oprs), 33
require (oprs), 32
reset kernel (oprs), 41
reset kernel (oprs-server), 151
reset parser (oprs-server), 151
run (oprs), 41

save db (oprs), 30
send (oprs), 42
send (oprs-server), 151
set action (oprs), 36
set eval post (oprs), 34
set function (oprs), 36
set meta (oprs), 35
set meta fact (oprs), 36
set meta fact op (oprs), 36
set meta goal (oprs), 36
set meta goal op (oprs), 36
set oprs data path (oprs), 32
set parallel intend (oprs), 35, 129
set parallel intention (oprs), 35, 130
set parallel post (oprs), 35, 129
set predicate (oprs), 36
set soak (oprs), 35
set symbol (oprs), 37
set time stamping (oprs), 35
show condition (oprs), 42
show copyright (oprs), 43
show copyright (oprs-server), 152
show db (oprs), 30
show intention (oprs), 42
show memory (oprs), 42
show op (oprs), 31
show oprs data path (oprs), 32
show run status (oprs), 41
show variable (oprs), 42
show version (oprs), 43
show version (oprs-server), 152
stat all (oprs), 42
stat db (oprs), 42
stat id (oprs), 42
step (oprs), 41

trace (oprs), 33
trace all (oprs), 34
trace applicable op (oprs), 33

trace conclude (oprs), 33
trace db (oprs), 34
trace db frame (oprs), 34
trace fact (oprs), 33
trace goal (oprs), 34
trace graphic (oprs), 34
trace graphic op (oprs), 31
trace graphic opf (oprs), 31
trace intend (oprs), 34
trace intention failure (oprs), 34
trace load op (oprs), 33
trace receive (oprs), 34
trace relevant op (oprs), 33
trace send (oprs), 34
trace step op (oprs), 31
trace step opf (oprs), 31
trace suc fail (oprs), 34
trace text (oprs), 34
trace text op (oprs), 31
trace text opf (oprs), 31
trace thread (oprs), 34, 130
transmit (oprs-server), 151
transmit all (oprs-server), 151

undeclare be (oprs), 38
unify (oprs), 42

406 USER COMMANDS INDEX

Evaluable Function and
Action Index

407

Evaluable Functions and
Actions Index

*, 96
+, 95, 96
-, 96
/, 96

abs, 97
all, 106
all-pos, 106
apply-sort-predicate-to-all, 120
apply-subst-in-goal, 107
apply-subst-in-gtexpr, 107
asleep-intention, 120
asleep-intention-cond, 120
asleep-intentions, 120
asleep-intentions-cond, 120

broadcast-message, 121
build-goal, 107

caaar, 103, 359
caadr, 103, 359
caar, 102, 359
cadar, 103, 359
caddr, 103, 360
cadr, 102, 359
car, 102, 359
cdaar, 103, 359
cdadr, 103, 360
cdar, 102, 359
cddar, 103, 359
cdddr, 103, 360
cddr, 102, 359
cdr, 102, 359
cons, 102, 358

cons-tail, 102

delete-from-list, 104

end-critical-section, 122
execute-command, 122

fact-invoked-ops-of, 98
FACT-STATEMENT, 99
fail, 122
ff-val, 106
find-intention-id, 100
find-intentions-id, 100
first, 103, 358
float-to-int, 97
FSTATEMENT-ARG, 99
FSTATEMENT-PREDICAT, 99

gensym, 105
get-all-intentions, 100
get-current-intention, 100
get-float-array, 97
get-float-array-size, 98
get-int-array, 98
get-int-array-size, 98
get-intended-decision-procedures, 100
get-intention-priority, 101
get-intention-time, 101
get-other-intentions, 100
get-root-intentions, 100
get-sleeping-intentions, 100
get-the-decision-procedures-of, 98
GOAL-STATEMENT, 99
GSTATEMENT-ARG, 99

408

EVALUABLE FUNCTIONS AND ACTIONS INDEX 409

GSTATEMENT-PREDICAT, 99

int-to-float, 97
intend-all-goals-//, 118
intend-all-goals-//-after, 118
intend-all-goals-//-after-roots, 119
intend-all-goals-//-as-roots, 118
intend-all-goals-//-as-roots-with-priority,

118
intend-all-ops, 118
intend-all-ops-after, 118
intend-all-ops-as-root, 118
intend-goal, 119
intend-goal-after-before, 119
intend-goal-with-priority, 119
intend-goal-with-priority-after-before,

119
intend-op, 117
intend-op-after, 117
intend-op-after-before, 117
intend-op-before-after, 117
intend-op-with-priority, 117
intend-op-with-priority-after, 117
intend-op-with-priority-after-before,

117

kill-intention, 120
kill-intentions, 120
kill-other-intentions, 119

l-list, 105
last, 103
length, 104, 358
list-difference, 104
list-difference-order, 104
list-intersection, 104
list-union, 104

make-float-array, 97
make-int-array, 98
mention, 107
mod, 97
mtime, 101
multicast-message, 121

n-all, 106
n-all-list, 106

nth, 104, 360
number-of-intentions, 100

op-instance-goal, 98

preferred-of, 99
print, 115
print-inside, 115
printf, 116
property-of, 98

rand, 97
read-inside, 116
read-inside-id, 116
read-inside-id-var, 116
reverse, 105, 360

safety-handlers-of, 99
second, 103, 360
select-randomly, 104, 358
send-message, 115, 121
send-string, 121
set-float-array, 116
set-int-array, 117
set-intention-priority, 120
sort-alpha, 105
sort-intention-none, 121
sort-intention-priority, 121
sort-intention-priority-time, 121
sort-intention-time, 121
sprintf, 105
start-critical-section, 122
string-cat, 105
succeed, 122
SYS-CLOCK-TICK, 101

tag-current-intention, 119
term-string-cat, 105
test-and-set, 122
time, 101

USER-CLOCK-TICK, 101
USER-SYS-CLOCK-TICK, 101

val, 105

wake-up-intention, 120

410 EVALUABLE FUNCTIONS AND ACTIONS INDEX

Evaluable Predicate Index

411

Predicates Index

¡, 88
¡=, 88
=, 90
==, 90
¿, 88
¿=, 88

ATOMP, 92

BOUNDP, 91

CONSP, 92

ELAPSED-MTIME, 90
ELAPSED-TIME, 89
EQUAL, 91

FLOATP, 91

INTEGERP, 91
IS-FACT-INVOKED, 89
IS-GOAL-INVOKED, 89

LONG-LONGP, 91

MEMQ, 91

NOT-AN-INSTANCE-OF-ME, 89
NULL, 90
NULL C, 91
NULL CAR, 90
NUMBERP, 91

PROPERTY-P, 89

STRINGP, 91

412

Kernel Function Index

413

Kernel Functions Index

action first call, 340
action number called, 340
add external fact, 339
add to head, 347
add to tail, 347
add user end kernel hook, 135
append list, 348

broadcast message string, 162
build c list, 344
build float, 344
build id, 344
build integer, 344
build l list, 344
build nil, 344
build qstring, 344
build string, 344
build t, 344

copy l list, 345

declare atom, 344
declare user action, 124
declare user eval funct, 108
declare user eval pred, 93
delete list node, 349
delete list pos, 349

external register to the mp host prot,
160

external register to the mp prot, 160

fact creation, 337
fact reception, 337
fact response, 338
fact sender, 337
fact soak, 337

find atom, 343
first in list, 350
for all list, 350
for list loop, 354
fprint fact, 337
fprint goal, 337
fprint intention, 340
fprint op instance, 341
FREE OPRS LIST, 346
free term, 344

get array from float array, 336
get array from int array, 336
get float array size, 336
get from head, 349
get from tail, 349
get int array size, 336
get list head, 348
get list next, 352
get list next func, 353
get list pos, 349
get list prev, 353
get list tail, 348
get term from l car, 345
goal creation, 338
goal reception, 338
goal response, 338
goal soak, 338

in list, 350
insert list pos, 347
intention bottom op instance, 341
intention fact, 340
intention goal, 341
intention graph roots, 342
intention priority, 340

414

KERNEL FUNCTIONS INDEX 415

l add to tail, 345
l car, 345
l cdr, 345
l cons, 345
l length, 345
l nth, 345
last in list, 350
list empty, 350
list equal, 351
list length, 349
loop through list, 354

make and declare action, 123
make and declare eval funct, 108
make and declare eval pred, 92
make atom, 343
make external lisp list, 339
make external term comp, 339
make external term list, 339
make float array from array, 336
make int array from array, 336
make l car from term, 345
make list, 346
MAKE OBJECT, 342
merge sort list func, 352
multicast message string, 161
my intention list scheduler, 138
my intention list sort, 139

op file name, 342
op instance fact, 341
op instance goal, 341
op instance op, 341
op name, 341
OPRS FREE, 343
oprs intention graph, 336
OPRS MALLOC, 342

print fact, 337
print goal, 337

read string from socket, 161
replace list, 347
report fatal external error, 136
report recoverable external error, 137
reverse list, 352

search list, 351
send command to parser, 345
send message string, 161
sort list, 352
sort list func, 352

416 KERNEL FUNCTIONS INDEX

Variable Index

417

Variables Index

current intention, 335
current oprs, 335
current tib, 335

intention list sort predicate, 139
intention par scheduler, 138
intention scheduler, 138

lisp t sym, 51, 334

main loop pool sec, 335
main loop pool usec, 335
mp name, 160
mp socket, 160

nil sym, 51, 334

wait sym, 51, 335

x oprs top level widget, 335, 383

418

Bibliography

[Aba93] A. Abassi. Outil d’aide au diagnostic pour la supervision du systeme
CAUTRA. Mémoire de Stage Ecole Nationale de l’Aviation Civile ???,
ENAC, Toulouse, France, June 1993. In french.

[BG83] U. Bonollo and M. P. Georgeff. Peritus: A Knowledge Engineering
Tool For The Development Of Procedural Expert Systems. Technical
Report 39, Monash University, Melbourne, Australia, 1983.

[Cha93] R. Chatila. Autonomous navigation in natural environment. In
3rd International Symposium on Experimental Robotics. ISER, Kyoto
(Japan), October 1993.

[CM84] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-
Verlag, Berlin, second edition, 1984.

[Fou] Open Software Foundation. Motif Programmer’s Manual. Open Soft-
ware Foundation, Englewoods Cliffs, New Jersey.

[Fra92] Francois Felix Ingrand. OPRS Development Environment Manual.
Francois Felix Ingrand, 20, Chemin Michoun, 31500 Toulouse France,
1992.

[GB83] M. P. Georgeff and U. Bonollo. Procedural Expert Systems. In Pro-
ceedings of the Eighth International Joint Conference on Artificial In-
telligence, Oprlsruhe, Germany, 1983.

[Geo82] M. P. Georgeff. Procedural Control in Production Systems. Artificial
Intelligence, 18:175–201, 1982.

[Geo84] M. P. Georgeff. An expert system for representing procedural knowl-
edge. In J. J. Richardson, editor, Proceedings of the Joint Services
Workshop on Artificial Intelligence in Maintenance, pages 153–170, Air
Force Systems Command, Human Resources Laboratory, Brooks AFB,
Texas, 1984.

[Geo85] M. P. Georgeff. Reasoning about Procedural Knowledge. In Proceedings
of the AIAA/
ACM/NASA/IEEE Computers in Aerospace Conference, Long Beach,
California, U.S.A, 1985.

419

420 BIBLIOGRAPHY

[Geo88] M. P. Georgeff. An Embedded Real-Time Reasoning System. In Pro-
ceedings of the 12th IMACS World Congress, Paris, France, 1988.

[GI88] M. P. Georgeff and F. F. Ingrand. Research on Procedural Reasoning
Systems. Final Report, Phase 1, for NASA Ames Research Center,
Moffet Field, California, U.S.A, Artificial Intelligence Center, SRI In-
ternational, Menlo Park, California, U.S.A, October 1988.

[GI89a] M. P. Georgeff and F. F. Ingrand. Decision-Making in an Embedded
Reasoning System. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pages 972–978, Detroit, Michigan,
U.S.A, 1989.

[GI89b] M. P. Georgeff and F. F. Ingrand. Monitoring and Control of Spacecraft
Systems Using Procedural Reasoning. In Proceedings of the Proceedings
of the Space Operations-Automation and Robotics Workshop, Houston,
Texas, 1989.

[GI90a] M. P. Georgeff and F. F. Ingrand. Real-Time Reasoning: The Moni-
toring and Control of Spacecraft Systems. In Proceedings of the Sixth
IEEE Conference on Artificial Intelligence Applications, Santa Barbara,
California, U.S.A, March 1990.

[GI90b] M. P. Georgeff and F. F. Ingrand. Research on Procedural Reason-
ing Systems. Final Report, Phase 2, for NASA Ames Research Center,
Moffet Field, California, U.S.A, Artificial Intelligence Center, SRI In-
ternational, Menlo Park, California, U.S.A, June 1990.

[GL85] M. P. Georgeff and A. L. Lansky. Development of an Expert System
for Representing Procedural Knowledge. Final Report, for NASA Ames
Research Center, Moffet Field, California, U.S.A, Artificial Intelligence
Center, SRI International, Menlo Park, California, U.S.A, December
1985.

[GL86a] M. P. Georgeff and A. L. Lansky. A System for Reasoning in Dynamic
Domains: Fault Diagnosis on the Space Shuttle. Technical Note 375,
Artificial Intelligence Center, SRI International, Menlo Park, California,
U.S.A, 1986.

[GL86b] M. P. Georgeff and A. L. Lansky. Procedural Knowledge. Proceedings
of the IEEE Special Issue on Knowledge Representation, 74:1383–1398,
1986.

[GL87] M. P. Georgeff and A. L. Lansky. Reactive Reasoning and Planning: An
Experiment with a Mobile Robot. In Proceedings of the Sixth National
Conference on Artificial Intelligence, Seattle, Washington, 1987.

[GLB85] M. P. Georgeff, A. L. Lansky, and P. Bessiere. A Procedural Logic.
In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, Los Angeles, California, U.S.A, 1985.

BIBLIOGRAPHY 421

[GLS87] M. P. Georgeff, A. L. Lansky, and M. Schoppers. Reasoning and plan-
ning in dynamic domains: an experiment with a mobile robot. Tech-
nical note 380, Artificial Intelligence Center, SRI International, Menlo
Park, California, U.S.A, 1987.

[GLS89] M. P. Georgeff, A. L. Lansky, and M. J. Schoppers. Reasoning and
Planning in Dynamic Domains: An Experiment with a Mobile Robot.
Technical Report 380, Artificial Intelligence Center, SRI International,
Menlo Park, California, U.S.A, 1989.

[IC93a] F. F. Ingrand and V. Coutance. Procedural Reasoning versus Black-
board Architecture for Real-Time Reasoning. In Proceedings of the 13th
International Workshop on Artificial Intelligence, Avignon, France,
1993.

[IC93b] F. F. Ingrand and V. Coutance. Real-Time Reasoning using Procedural
Reasoning. Technical Report 93-104, LAAS/CNRS, Toulouse, France,
1993.

[IG90] F. F. Ingrand and M. P. Georgeff. Managing Deliberation and Reasoning
in Real-Time AI Systems. In Proceedings of the 1990 DARPA Workshop
on Innovative Approaches to Planning, Santa Diego, California, U.S.A,
November 1990.

[IGL89] F. F. Ingrand, J. Goldberg, and J. D. Lee. SRI/Grumman Crew Mem-
bers’ Associate Program: Development of an Authority Manager. Final
Report, Artificial Intelligence Center, SRI International, Menlo Park,
California, U.S.A, 1989.

[IGR92] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for
Real-Time Reasoning and System Control. IEEE Expert, Knowledge-
Based Diagnosis in Process Engineering, 7(6):34–44, December 1992.
Also available as LAAS Technical Report 92-521.

[Pos89] Jef Posopnzer. PBM Pacopge - Man page. None, 1989.

[Rev92] F. Revillod. Une Architecture Décisionelle pour le Contrôle d’un Robot
Autonome. Rapport de Stage Ecole Supérieure d’Aéronautique et de
l’Espace ???, LAAS/CNRS, Toulouse, France, September 1992. In
french.

[RG90] A. S. Rao and M. P. Georgeff. Intelligent Real-Time Network Man-
agement. In Avignon: Expert Systems and their Applications, Avignon,
France, 1990.

[Sta91a] MIT X Consortium Standard. X Toolkit Intrinsics - C Language In-
terface. X11 Consortium, x version 11, release 5 edition, August 1991.

[Sta91b] MIT X Consortium Standard. Xlib - C Language X Interface. X11
Consortium, x version 11, release 5 edition, August 1991.

422 BIBLIOGRAPHY

[Sti87] Mark Stieckel. Term Indexing Database. Technical Report 87-5, SRI
International, Menlo Park, California, U.S.A, 1987.

[WI91] L. Wesley and F. F. Ingrand. Application of OPRS to Network Man-
agement System. Final Report, Artificial Intelligence Center, SRI In-
ternational, Menlo Park, California, U.S.A, 1991.

[WL93] L. Wesley and J. Lee. Evaluation of OPRS: Final Report. Final Report,
Artificial Intelligence Center, SRI International, Menlo Park, California,
U.S.A, 1993.

	I Licensing Information
	II Overview
	What is Procedural Reasoning?
	Overall Description of OPRS
	Example of Procedure/OP in OPRS
	The OPRS Development Environment
	The OPRS Application Environment
	The Structure of this Manual

	III OPRS Kernel
	How to Use the OPRS Kernel
	How to Start a OPRS Kernel
	Arguments to the oprs Command
	OPRS Kernel Environment Variables
	How to Kill an OPRS Kernel
	OPRS Kernel over Network
	How to Connect to an OPRS Kernel

	OPRS Kernel Commands
	OPRS Kernel Parser
	OPRS Kernel Database Commands
	OPRS Kernel OP Library Commands
	OPRS Kernel Loading Commands
	OPRS Kernel Trace Commands
	OPRS Kernel Run Option Commands
	OPRS Kernel Meta Level Option Commands
	OPRS Kernel Compiler/Parser Option Commands
	OPRS Kernel Declaration Commands
	OPRS Kernel Listing Commands
	OPRS Kernel Dumping/Loading Commands
	OPRS Kernel Status and Control Commands
	OPRS Kernel Miscellaneous Commands
	Include File Format

	Syntax and Semantics…
	Variables
	Logical Variables
	Program Variables
	Global Variables

	Terms
	Integer as a Term
	Long long integer as a Term
	Float as a Term
	String as a Term
	Symbol as a Term
	Variable as a Term
	Variable List as a Term
	Gtexpression as a Term
	Gexpression as a Term
	Composed Term as a Term
	Lisp List as a Term
	User Pointers as a Term
	Array of Integers as a Term
	Array of Floats as a Term
	C List as a Term
	Other Objects as Term

	Special Symbols
	Frames and Binding Environments
	Properties
	General Expressions
	General Temporal Expressions
	Achieve Operator
	Test Operator
	Wait Operator
	Passive Preserve Operator
	Active Preserve Operator
	Assert/Conclude Operator
	Retract Operator

	General Meta Expressions
	FACT Meta Expressions
	GOAL Meta Expressions

	Facts
	Messages
	Goals

	OP Syntax and Semantics
	OP Applicability Fields
	Invocation Part
	Context Part
	Setting Part

	OP Other Fields
	Effects Part
	Properties Part
	Documentation Part

	Execution Part
	Graph OP
	New Graph OP Construction
	Action OPs
	Text OPs

	Procedure and Expression Compilation and Parsing
	Action Checking
	Predicate Checking
	Function Checking
	Symbol Checking

	Database
	Database File Format
	Unification
	Conclude
	Consultation
	Closed World Predicates
	Functional Facts
	Basic Events
	Evaluable Predicates
	Predefined Evaluable Predicates
	How to Define your Own Evaluable Predicates

	OP Predicates

	Evaluable Functions
	Predefined Evaluable Functions
	Arithmetic Evaluable Functions
	Array Manipulation Evaluable Functions
	OP Instance Related Evaluable Functions
	Fact and Goal Related Evaluable Functions
	Intention Related Evaluable Functions
	Time Related Evaluable Functions
	Lisp Evaluable Functions
	Miscellaneous Evaluable Functions
	Goal Building Evaluable Functions

	How to Define your Own Evaluable Functions

	Procedure Execution and Run Time
	Run Time
	Intention Graph
	Multi Threads Execution
	OPRS Kernel Main Loop
	OP Applicability
	Intending OP
	Using Action OPs
	Predefined Actions
	How to Define your Own Actions

	Graph OP Traversal
	Goal Commitment
	Message Passing

	Parallel Execution of OPs in OPRS
	Changes in the OP Representation
	New Traces and New Options
	Performance Considerations

	Meta Level Reasoning
	SOAK and other Meta Facts
	Writing Meta Level OPs
	Other Aspects of the Meta Level

	Advanced Features
	OP Properties
	User Hooks
	User Code Error Handler
	Intention Graph Scheduling
	Intention Graph Sorting Predicate
	Intending Goals Directly
	Current and Quote
	Critical Section
	Universal Quantification of Variables
	User Pointers
	Action Slicing

	IV OPRS-Server
	How to Use the OPRS-Server
	Arguments of the OPRS-Server
	OPRS-Server Environment Variables
	Commands of the OPRS-Server
	OPRS-Server Commands to Handle OPRS Kernel
	OPRS-Server Communication Commands
	OPRS-Server Miscellaneous Commands

	V Message Passer
	How to Use the Message Passer
	Argument of the Message Passer
	Message Passer Environment Variables
	Argument of the Message Passer Killer
	Message Passer Killer Environment Variables
	How to Connect to the Message Passer from OPRS-Server and OPRS Kernel
	How to Connect to the Message Passer from an External Module
	Messages Format
	Example of C Code to Connect to the Message Passer
	Example of Lisp Code to Connect to the Message Passer
	Errors Reported by the Message Passer

	VI X-OPRS Kernel
	How to Use the X-OPRS Kernel
	X-OPRS Kernel Environment Variables
	Windows and Panes of the X-OPRS Kernel
	Text Pane
	Graphic OP Pane
	Graphic Intention Pane

	Menubar
	File Menu
	OPRS Menu
	Inspect Menu
	Trace Menu
	Option Menu
	Display Menu
	X-OPRS Help Menu

	Control and Status Panel
	Status Panel
	Control Button Menu

	VII OP Compiler
	How to Use the OP Compiler
	Argument of the OP Compiler
	OP Compiler Environment Variables
	Using the OP Compiler
	Errors Reported by the OP Compiler

	VIII OP Editor
	How to Use the OP Editor
	Arguments of the OP Editor
	OP Editor Environment Variables
	Creating a OP
	Editing an Existing OP
	Scroll Bars
	Selection Pane
	Footer and Dialog Box Help
	Pretty Printing

	OP Editor Commands
	Menubar of the OP Editor
	File Menu of the OP Editor
	Edit Menu of the OP Editor
	OP Menu
	Misc Menu
	Mode Menu
	OP Editor Help Menu

	Working Menu Items
	Move Objects
	Create Node
	Open Node
	Create If Node
	Flip Conj/Disj Out
	Flip Conj/Disj In
	Create Edge
	Create Knot
	Duplicate Objects
	Merge Node
	Edit Object
	Convert End
	Convert Start
	Align Object
	Align Object Vert
	Align Object Hor
	Destroy Object
	Relevant OP

	OP File Format
	OPF Format
	GGRAPH Format
	How to Get Grasper Graph on your Lisp Machine
	Grasper Graph Incompatibilities

	SGRAPH Format

	IX Using OPRS
	Introduction to Using OPRS
	Setting Up your Environment
	Getting Started
	Getting Started with the OP Editor
	Getting Started with the X-OPRS Kernel

	Setting Up an OPRS Application
	How Many OPRS Kernels Does it Takes to Screw a Light Bulb?
	OPRS Kernels or X-OPRS Kernels
	The Database: Facts, Only the Facts
	The Representation of Facts
	Which Predicate?
	Which Predicates Should be Declared as Closed World Predicates?
	Which Predicate Should be Declared as Functional Facts?
	Which Predicates Should be Declared as Basic Events?
	Forbidden Things and Things to Avoid with the Database

	Which OP for Which Task?
	Fact Invoked OPs
	Goal Invoked OPs
	Predefined OPs

	User Defined Evaluable Functions
	User Defined Evaluable Predicates
	User Defined Actions
	Do You Need Meta Level?
	Intention Graph Manipulation
	Data and Commands
	Linking C Code in the Kernels
	Miscellaneous Questions
	Common Mistakes

	Simple OPRS Applications
	Factorial Example
	Factorial Example OPs
	Other Factorial Example OPs

	Complex OPRS Applications
	Truck Loading Example
	Truck Loading Example Presentation
	How to Install the Truck Loading Demo
	How to Run the Truck Loading Demo
	Truck Loading Example OPs

	Applications of OPRS
	Optimizing an OPRS Applications
	Optimizing Hashtables
	Just the Right Level of Meta Level
	Database Organization
	Slicing your Action

	X Appendices
	Principal Differences Between C-PRS and OPRS
	Principal Differences with SRI PRS
	Principal Differences Between Subsequent Versions of C-PRS
	Changes Between Version 1.0 and Version 1.1
	Changes Between Version 1.1 and Version 1.2
	Changes in the Commands Syntax of the OPRS Kernel
	Miscellaneous Changes Between Version 1.1 and Version 1.2

	Changes Between Version 1.2 and Version 1.3
	Miscellaneous Changes Between Version 1.2 and Version 1.3

	Changes Between Version 1.3 and Version 1.4
	Main Changes Between Version 1.3 and Version 1.4
	Miscellaneous Changes Between Version 1.3 and Version 1.4

	Hardware and Software Dependancies
	VxWorks
	C++ Relocatables
	SparcStation
	Windows95-NT

	Commands Equivalence between the OPRS Kernel and the X-OPRS Kernel
	Default OPs
	`new-default.opf'
	`meta-intended-goal.opf'
	`new-meta-ops.opf'
	`semaphore.opf'

	Library and Kernel Functions
	Kernel Functions
	Data Structures and Types Used
	Important Variables
	Important Constants
	Oprs Manipulation Functions
	Array Manipulation Functions
	Fact and Goal Manipulation Functions
	Fact Posting Functions
	Intention Manipulation Functions
	OP Instance Manipulation Functions
	OP Manipulation Functions
	Intention Graph Manipulation Functions
	Allocation Functions
	LISP_LIST Manipulation Functions
	Miscellaneous Kernel Functions

	Registration and Communication Functions, `libmp.a'
	`liblist.a' library
	Creating Lists
	Destroying Lists
	Placing Elements in a List
	Examining the Elements of a List
	Removing Elements from Lists
	Examining the Lists
	Applying Functions to Lists
	Changing the Order of the Elements
	Marking Current Position in a OPRS_LIST

	Lisp and Lisp-like Functions
	LISP_LIST
	Standard Lisp Functions

	Examples
	Message Example
	Message Example OPs

	Test Examples
	Wait OPs
	LISP_LIST manipulation OPs
	Fibonacci OPs
	Parallel Fibonacci OPs

	How to Install the OPRS Development Environment
	Description of the Distribution
	Installation for Demonstration License
	Installation for Binary License
	Installation for Source License

	Grammar Used in the OPRS Development Environment
	Syntaxic Grammar Used in the OPRS Development Environment
	Lexical Grammar Used in the OPRS Development Environment

	Xt/Motif Widgets Hierarchy and Resources
	Xt Command Line Arguments
	X-OPRS Motif Widgets Hierarchy and Resources
	How to Connect your Own Widget in X-OPRS
	X-OPRS Resources
	X-OPRS Motif Widgets Hierarchy

	OP Editor Motif Widgets Hierarchy and Resources
	OP Editor Resources
	OP Editor Motif Widgets Hierarchy

	Known Problems and Things to Avoid
	Known Problems
	Things to Avoid

	Glossary
	General Index
	Command Index
	Evaluable Function and Action Index
	Evaluable Predicate Index
	Kernel Function Index
	Variable Index
	Bibliography

