crocoddyl 1.9.0
Contact RObot COntrol by Differential DYnamic programming Library (Crocoddyl)
 
Loading...
Searching...
No Matches
euclidean.hpp
1
2// BSD 3-Clause License
3//
4// Copyright (C) 2019, LAAS-CNRS
5// Copyright note valid unless otherwise stated in individual files.
6// All rights reserved.
8
9#ifndef CROCODDYL_CORE_STATES_EUCLIDEAN_HPP_
10#define CROCODDYL_CORE_STATES_EUCLIDEAN_HPP_
11
12#include "crocoddyl/core/fwd.hpp"
13#include "crocoddyl/core/utils/exception.hpp"
14#include "crocoddyl/core/state-base.hpp"
15
16namespace crocoddyl {
17
18template <typename _Scalar>
19class StateVectorTpl : public StateAbstractTpl<_Scalar> {
20 public:
21 typedef _Scalar Scalar;
23 typedef typename MathBase::VectorXs VectorXs;
24 typedef typename MathBase::MatrixXs MatrixXs;
25
26 explicit StateVectorTpl(const std::size_t nx);
27 virtual ~StateVectorTpl();
28
29 virtual VectorXs zero() const;
30 virtual VectorXs rand() const;
31 virtual void diff(const Eigen::Ref<const VectorXs>& x0, const Eigen::Ref<const VectorXs>& x1,
32 Eigen::Ref<VectorXs> dxout) const;
33 virtual void integrate(const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& dx,
34 Eigen::Ref<VectorXs> xout) const;
35 virtual void Jdiff(const Eigen::Ref<const VectorXs>&, const Eigen::Ref<const VectorXs>&, Eigen::Ref<MatrixXs> Jfirst,
36 Eigen::Ref<MatrixXs> Jsecond, const Jcomponent firstsecond = both) const;
37 virtual void Jintegrate(const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& dx,
38 Eigen::Ref<MatrixXs> Jfirst, Eigen::Ref<MatrixXs> Jsecond,
39 const Jcomponent firstsecond = both, const AssignmentOp = setto) const;
40 virtual void JintegrateTransport(const Eigen::Ref<const VectorXs>& x, const Eigen::Ref<const VectorXs>& dx,
41 Eigen::Ref<MatrixXs> Jin, const Jcomponent firstsecond) const;
42
43 protected:
44 using StateAbstractTpl<Scalar>::nx_;
45 using StateAbstractTpl<Scalar>::ndx_;
46 using StateAbstractTpl<Scalar>::nq_;
47 using StateAbstractTpl<Scalar>::nv_;
48 using StateAbstractTpl<Scalar>::lb_;
49 using StateAbstractTpl<Scalar>::ub_;
51};
52
53} // namespace crocoddyl
54
55/* --- Details -------------------------------------------------------------- */
56/* --- Details -------------------------------------------------------------- */
57/* --- Details -------------------------------------------------------------- */
58#include "crocoddyl/core/states/euclidean.hxx"
59
60#endif // CROCODDYL_CORE_STATES_EUCLIDEAN_HPP_
Abstract class for the state representation.
Definition: state-base.hpp:42
std::size_t nv_
Velocity dimension.
Definition: state-base.hpp:285
std::size_t nx_
State dimension.
Definition: state-base.hpp:282
bool has_limits_
Indicates whether any of the state limits is finite.
Definition: state-base.hpp:288
std::size_t nq_
Configuration dimension.
Definition: state-base.hpp:284
VectorXs lb_
Lower state limits.
Definition: state-base.hpp:286
VectorXs ub_
Upper state limits.
Definition: state-base.hpp:287
std::size_t ndx_
State rate dimension.
Definition: state-base.hpp:283
virtual void integrate(const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &dx, Eigen::Ref< VectorXs > xout) const
Compute the state manifold integration.
virtual VectorXs zero() const
Generate a zero state.
virtual void diff(const Eigen::Ref< const VectorXs > &x0, const Eigen::Ref< const VectorXs > &x1, Eigen::Ref< VectorXs > dxout) const
Compute the state manifold differentiation.
virtual void Jintegrate(const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &dx, Eigen::Ref< MatrixXs > Jfirst, Eigen::Ref< MatrixXs > Jsecond, const Jcomponent firstsecond=both, const AssignmentOp=setto) const
Compute the Jacobian of the state manifold integration.
virtual VectorXs rand() const
Generate a random state.
virtual void JintegrateTransport(const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &dx, Eigen::Ref< MatrixXs > Jin, const Jcomponent firstsecond) const
Parallel transport from integrate(x, dx) to x.
virtual void Jdiff(const Eigen::Ref< const VectorXs > &, const Eigen::Ref< const VectorXs > &, Eigen::Ref< MatrixXs > Jfirst, Eigen::Ref< MatrixXs > Jsecond, const Jcomponent firstsecond=both) const
Compute the Jacobian of the state manifold differentiation.