Loading...
Searching...
No Matches
TensorAssign.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
11#define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
12
13namespace Eigen {
14
23namespace internal {
24template<typename LhsXprType, typename RhsXprType>
25struct traits<TensorAssignOp<LhsXprType, RhsXprType> >
26{
27 typedef typename LhsXprType::Scalar Scalar;
28 typedef typename traits<LhsXprType>::StorageKind StorageKind;
29 typedef typename promote_index_type<typename traits<LhsXprType>::Index,
30 typename traits<RhsXprType>::Index>::type Index;
31 typedef typename LhsXprType::Nested LhsNested;
32 typedef typename RhsXprType::Nested RhsNested;
33 typedef typename remove_reference<LhsNested>::type _LhsNested;
34 typedef typename remove_reference<RhsNested>::type _RhsNested;
35 static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions;
36 static const int Layout = internal::traits<LhsXprType>::Layout;
37
38 enum {
39 Flags = 0
40 };
41};
42
43template<typename LhsXprType, typename RhsXprType>
44struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense>
45{
46 typedef const TensorAssignOp<LhsXprType, RhsXprType>& type;
47};
48
49template<typename LhsXprType, typename RhsXprType>
50struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type>
51{
52 typedef TensorAssignOp<LhsXprType, RhsXprType> type;
53};
54
55} // end namespace internal
56
57
58
59template<typename LhsXprType, typename RhsXprType>
60class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> >
61{
62 public:
63 typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar;
64 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
65 typedef typename LhsXprType::CoeffReturnType CoeffReturnType;
66 typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested;
67 typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind;
68 typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index;
69
70 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs)
71 : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {}
72
74 EIGEN_DEVICE_FUNC
75 typename internal::remove_all<typename LhsXprType::Nested>::type&
76 lhsExpression() const { return *((typename internal::remove_all<typename LhsXprType::Nested>::type*)&m_lhs_xpr); }
77
78 EIGEN_DEVICE_FUNC
79 const typename internal::remove_all<typename RhsXprType::Nested>::type&
80 rhsExpression() const { return m_rhs_xpr; }
81
82 protected:
83 typename internal::remove_all<typename LhsXprType::Nested>::type& m_lhs_xpr;
84 const typename internal::remove_all<typename RhsXprType::Nested>::type& m_rhs_xpr;
85};
86
87
88template<typename LeftArgType, typename RightArgType, typename Device>
89struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
90{
91 typedef TensorAssignOp<LeftArgType, RightArgType> XprType;
92 typedef typename XprType::Index Index;
93 typedef typename XprType::Scalar Scalar;
94 typedef typename XprType::CoeffReturnType CoeffReturnType;
95 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
96 typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions;
97 static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
98
99 enum {
100 IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
101 PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
102 Layout = TensorEvaluator<LeftArgType, Device>::Layout,
103 RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess
104 };
105
106 EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
107 m_leftImpl(op.lhsExpression(), device),
108 m_rightImpl(op.rhsExpression(), device)
109 {
110 EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
111 }
112
113 EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
114 {
115 // The dimensions of the lhs and the rhs tensors should be equal to prevent
116 // overflows and ensure the result is fully initialized.
117 // TODO: use left impl instead if right impl dimensions are known at compile time.
118 return m_rightImpl.dimensions();
119 }
120
121 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
122 eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
123 m_leftImpl.evalSubExprsIfNeeded(NULL);
124 // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
125 // null value), attempt to evaluate the rhs expression in place. Returns true iff in place
126 // evaluation isn't supported and the caller still needs to manually assign the values generated
127 // by the rhs to the lhs.
128 return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
129 }
130 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
131 m_leftImpl.cleanup();
132 m_rightImpl.cleanup();
133 }
134
135 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
136 m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i);
137 }
138 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
139 const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned;
140 const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned;
141 m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i));
142 }
143 EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
144 {
145 return m_leftImpl.coeff(index);
146 }
147 template<int LoadMode>
148 EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
149 {
150 return m_leftImpl.template packet<LoadMode>(index);
151 }
152
153 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
154 costPerCoeff(bool vectorized) const {
155 // We assume that evalPacket or evalScalar is called to perform the
156 // assignment and account for the cost of the write here, but reduce left
157 // cost by one load because we are using m_leftImpl.coeffRef.
158 TensorOpCost left = m_leftImpl.costPerCoeff(vectorized);
159 return m_rightImpl.costPerCoeff(vectorized) +
160 TensorOpCost(
161 numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)),
162 left.bytes_stored(), left.compute_cycles()) +
163 TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
164 }
165
167 const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; }
169 const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; }
170
171 EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_leftImpl.data(); }
172
173 private:
174 TensorEvaluator<LeftArgType, Device> m_leftImpl;
175 TensorEvaluator<RightArgType, Device> m_rightImpl;
176};
177
178}
179
180
181#endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
Namespace containing all symbols from the Eigen library.
Definition: AdolcForward:45
const Device & device() const
required by sycl in order to construct sycl buffer from raw pointer
Definition: TensorEvaluator.h:114