|
hpp-core 6.0.0
Implement basic classes for canonical path planning for kinematic chains.
|
#include <hpp/core/time-parameterization/piecewise-polynomial.hh>


Public Types | |
| enum | { Order = _Order , NbCoeffs = Order + 1 } |
| typedef Eigen::Matrix< value_type, NbCoeffs, Eigen::Dynamic, Eigen::ColMajor > | ParameterMatrix_t |
| typedef Eigen::Matrix< value_type, Eigen::Dynamic, 1 > | Vector_t |
Public Member Functions | |
| PiecewisePolynomial (const ParameterMatrix_t ¶meters, const Vector_t &breakpoints) | |
| const ParameterMatrix_t & | parameters () const |
| const std::vector< value_type > & | breakpoints () const |
| TimeParameterizationPtr_t | copy () const |
| value_type | value (const value_type &t) const |
| Computes \( \sum_{i=0}^n a_i t^i \). | |
| value_type | derivative (const value_type &t, const size_type &order) const |
| Computes \( \sum_{i=1}^n i a_i t^{i-1} \). | |
| bool | polynomialsStartAtZero () const |
| void | polynomialsStartAtZero (bool startAtZero) |
| See the corresponding getter. | |
Public Member Functions inherited from hpp::core::TimeParameterization | |
| virtual value_type | derivativeBound (const value_type &low, const value_type &up) const |
| typedef Eigen::Matrix<value_type, NbCoeffs, Eigen::Dynamic, Eigen::ColMajor> hpp::core::timeParameterization::PiecewisePolynomial< _Order >::ParameterMatrix_t |
| typedef Eigen::Matrix<value_type, Eigen::Dynamic, 1> hpp::core::timeParameterization::PiecewisePolynomial< _Order >::Vector_t |
|
inline |
Construct piecewise polynomials of order k and defined by N polynomial.
| parameters | Matrix of polynomials coefficients (size k x N). |
| breakpoints | Domain of the piecewise polynomial, defined by N+1 breakpoints defining the half-open intervals of each polynomial. |
|
inline |
|
inlinevirtual |
Implements hpp::core::TimeParameterization.
|
inlinevirtual |
Computes \( \sum_{i=1}^n i a_i t^{i-1} \).
Implements hpp::core::TimeParameterization.
|
inline |
|
inline |
Whether the polynomial should be shifted.
If true, when evaluating the polynomials, the initial breakpoint time of a polynomial is substracted. A polynomial defined between \( [ t_k, t_{k+1} [ \) evaluates to \( P(t) = \sum_{i=0}^n a_i (t - t_k)^i \).
This defaults to false.
|
inline |
See the corresponding getter.
|
inlinevirtual |
Computes \( \sum_{i=0}^n a_i t^i \).
Implements hpp::core::TimeParameterization.