
Tracing ROS 2 with ros2_tracing

Christophe Bédard

ROS World 2021
October 20, 2021

DORSAL Laboratory
Polytechnique Montréal 󰎟

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Plan

1. Introduction

2. Context

3. Tracing & LTTng

4. ros2_tracing
5. Analysis

6. Demo

7. Conclusion

8. Questions

2

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Introduction

● Robotics
○ Many different types of applications
○ Toys, commercial applications, industrial applications
○ Safety-critical systems

● ROS 2
○ New capabilities
○ Distributed systems
○ Real-time constraints

3

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Context

● Debugging and diagnostics tools
○ Debugging: GDB
○ Logs: ROS, printf()
○ Introspection: rqt_graph
○ Others: diagnostic_aggregator, libstatistics_collector

● Distributed systems
○ How to analyze a distributed system?

● Real-time, production

● Observability problems
○ Observer effect
○ Have to avoid influencing or affecting the application

● Observing an application’s (lack of) determinism
○ See Ingo Lütkebohle's ROSCon 2017 talk about determinism in ROS:

doi.org/10.36288/ROSCon2017-900789
○ See also his talk at the ROSCon 2019 real-time workshop:

apex.ai/roscon2019
4

https://doi.org/10.36288/ROSCon2017-900789
https://www.apex.ai/roscon2019

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Tracing

● Goal: gather runtime execution information
○ Low-level information
○ OS and application

● Useful when issues are hard to reproduce

● Many different tracers with different features
○ LTTng, perf, Ftrace, eBPF, DTrace, SystemTap, Event Tracing for Windows, etc.

● Workflow (static instrumentation)
○ Instrument an application with trace points
○ Configure tracer, run the application
○ Trace points generate events (information)
○ Events make up a trace

● We want to minimize the overhead!
○ To use in production
○ Observer effect

5

Tracing ROS 2 with ros2_tracing - Christophe Bédard

LTTng

● lttng.org

● High-performance tracer
○ Low overhead
○ Userspace tracer + kernel tracer

● Linux only

● Instrumentation
○ Built into the Linux kernel (e.g., sched_switch, net_dev_queue)
○ Added statically to your application
○ Or by LD_PRELOAD ing libraries

● Trace data processing
○ Online (live)
○ Offline (more common & simpler)

6

https://lttng.org/

Tracing ROS 2 with ros2_tracing - Christophe Bédard

LTTng - example

$ lttng create ros2-session

$ lttng enable-event --kernel sched_switch

$ lttng enable-event --userspace ros2:rclcpp_publish

$ lttng enable-event --userspace ros2:*

$ lttng start

$ ros2 run package executable

$ lttng stop && lttng destroy

7

● Creating a tracing session, enabling trace events, tracing our application, and stopping

Tracing ROS 2 with ros2_tracing - Christophe Bédard

LTTng - example (2)

$ babeltrace ros2-session/

sched_switch: { cpu_id = 1 }, { prev_comm = "swapper/1", prev_tid = 0, prev_prio = 20, prev_state = (

"TASK_RUNNING" : container = 0), next_comm = "test_ping", next_tid = 416160, next_prio = 20 }

ros2:callback_start: { cpu_id = 1 }, { callback = 0x541190, is_intra_process = 0 }

ros2:rclcpp_publish: { cpu_id = 1 }, { message = 0x5464F0 }

ros2:rcl_publish: { cpu_id = 1 }, { publisher_handle = 0x541A40, message = 0x5464F0 }

ros2:rmw_publish: { cpu_id = 1 }, { message = 0x5464F0 }

ros2:callback_end: { cpu_id = 1 }, { callback = 0x541190 }

8

● Viewing the trace: each trace event has a name, timestamp, payload

Tracing ROS 2 with ros2_tracing - Christophe Bédard

ros2_tracing

9

● gitlab.com/ros-tracing/ros2_tracing

● Collection of tools

● Closely integrated into ROS 2
○ To promote use and adoption
○ Since ROS 2 Eloquent (2019)
○ Many improvements and additions since then

● Tools to instrument the core of ROS 2 with LTTng
○ rclcpp , rcl, rmw (rmw_cyclonedds*)

● Tools to configure tracing with LTTng
○ Command: ros2 trace
○ Action for ROS 2 launch: Trace

Figure 1. Instrumentation and general workflow.

https://gitlab.com/ros-tracing/ros2_tracing

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Tools - ros2 trace command

10

$ ros2 trace \

 --session-name ros2-session \

 --kernel sched_switch \

 --ust ros2:rclcpp_publish ros2:*

writing tracing session to: /home/chris/.ros/tracing/ros2-session

press enter to start...

press enter to stop...

stopping & destroying tracing session

● To easily start tracing

● Starting & stopping is done manually

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Tools - Trace action for ROS 2 launch

11

from launch import LaunchDescription

from launch_ros.actions import Node

from tracetools_launch.action import Trace

def generate_launch_description():

 return LaunchDescription([

 Trace(

 session_name='ros2-session',

 events_kernel=['sched_switch'],

 events_ust=['ros2:rclcpp_publish', 'ros2:*'],

),

 Node(

 package='pkg',

 executable='exe',

),

])

● Starts tracing when launched

● Stops tracing when exiting

● Great for complex systems with multiple nodes

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Tools - Trace action for ROS 2 launch (2)

12

<launch>

 <trace

 session-name="ros2-session"

 events-kernel="sched_switch"

 events-ust="ros2:rclcpp_publish ros2:*"

 />

 <node pkg="pkg" exec="exe" />

</launch>

launch:

- trace:

 session-name: ros2-session

 events-kernel: sched_switch

 events-ust: ros2:rclcpp_publish ros2:*

- node:

 pkg: pkg

 exec: exe

● Also available in XML and YAML launch files

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Instrumentation

13

● Only on Linux, not included in the binaries
○ At least for now
○ Install LTTng and (re)build the tracetools package

● Instrumentation was designed to support multiple tracers
○ Other tracers and/or OSes, eventually
○ rclcpp , rcl, rmw, etc. → tracetools → LTTng

● Design principles
○ Want information about each layer & the interaction between them
○ However, layers make it hard to get the full picture
○ Need to gather small bits of information here and there
○ Put it all together offline or externally

● Real-time
○ Applications generally have a non-real-time initialization phase
○ We take advantage of this to collect as much information up front
○ It lowers overhead in the real-time “steady state” phase

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Instrumentation (2)

14

● Object instances
○ Node, publisher, subscription, timer

● Events
○ Callback execution (subscription, timer)
○ Message publication
○ Message taking (for subscription callbacks)
○ Lifecycle node state change
○ Internal executor phases
○ Etc.

● Applies to most layers
○ rclcpp , rcl, rmw
○ DDS (work in progress with Eclipse Cyclone DDS)

Tracing ROS 2 with ros2_tracing - Christophe Bédard

ros2:rcl_node_init: { node_handle = 0x🚀, rmw_handle = 0x..., node_name = "test_ping" }

ros2:rcl_publisher_init: { publisher_handle = 0x󰎲, node_handle = 0x🚀, topic_name = "/ping", queue_depth = 10}

ros2:rcl_timer_init: { timer_handle = 0x⏲, period = 500000000 }

ros2:rclcpp_timer_callback_added: { timer_handle = 0x⏲, callback = 0x🤖 }

ros2:rclcpp_callback_register: { callback = 0x🤖, symbol = "std::_Bind<void (PingNode::*(PingNode*))()>" }

ros2:rclcpp_timer_link_node: { timer_handle = 0x⏲, node_handle = 0x🚀 }

ros2:callback_start: { callback = 0x🤖, is_intra_process = 0 }

ros2:rclcpp_publish: { message = 0x󰎟 }

ros2:rcl_publish: { message = 0x󰎟, publisher_handle = 0x󰎲 }

ros2:rmw_publish: { message = 0x󰎟 }

ros2:callback_end: { callback = 0x🤖 }

● Ping node: a timer is used to publish a message periodically

Instrumentation - example

15

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Overhead benchmark

16

● Goal: measure tracing overhead in a ROS 2 context
○ Mainly interested in a latency overhead
○ Tool: gitlab.com/ApexAI/performance_test

● Parameters
○ Inter-process: 1 pub → 1 sub
○ Publishing: 100 - 2000 Hz
○ Messages: 1 - 256 KB
○ Quality of service: reliable
○ Eclipse Cyclone DDS

● Setup
○ Ubuntu Server 20.04.2 with PREEMPT_RT (5.4.3-rt1)
○ Intel i7-3770 @ 3.40 GHz, 8 GB RAM
○ SMT/Hyper-threading disabled (4 cores, 1 thread/core)
○ SCHED_FIFO, RT priority 99, and other tuning
○ Run for 20 minutes, discard the first 5 seconds

https://gitlab.com/ApexAI/performance_test

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Overhead benchmark - results

17

Figure 2. Individuals results: no tracing (left) vs. tracing (right).

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Overhead benchmark - results (2)

18

● Still some variability: negative overhead?!

● But overall it does looks very good!

Figure 3. Overhead results: absolute (left) vs. relative (right).

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Analysis

19

● Many tools to analyze traces generated by LTTng
○ babeltrace: babeltrace.org
○ Trace Compass: tracecompass.org

● tracetools_analysis
○ gitlab.com/ros-tracing/tracetools_analysis
○ Goal: quick trace analysis
○ Simple Python tool
○ Pre-processes raw trace data, provides multiple 2D tables as pandas DataFrames
○ Offers simple functions to analyze those DataFrames
○ Use inside a Jupyter Notebook, or in a simple Python file

● Advanced analyses
○ Correlate ROS 2 trace events with events from the Linux kernel or other applications
○ Analyze the aggregation of traces from multiple systems

https://babeltrace.org/
http://tracecompass.org/
https://gitlab.com/ros-tracing/tracetools_analysis

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Analysis - example

20

import tracetools_analysis; import bokeh

events = load_file('~/.ros/tracing/pingpong') # Read the trace

handler = Ros2Handler.process(events) # (Pre-)process the data

data_util = Ros2DataModelUtil(handler.data)

callback_symbols = data_util.get_callback_symbols() # Extract callback functions

duration = bokeh.plotting.figure(...)

for callback, symbol in callback_symbols.items(): # For each callback...

 owner_info = data_util.get_callback_owner_info(callback)

 if not owner_info or '/parameter_events' in owner_info: # Filter out internal subscriptions

 continue

 duration_df = data_util.get_callback_durations(callback) # Get duration data for this callback

 duration.line(x='timestamp', y='duration', legend=str(symbol), # Add to plot

 source=bokeh.models.ColumnDataSource(duration_df))

bokeh.io.show(duration) # Display final plot

● Plot callback durations

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Analysis - example (2)

21
Figure 4. Callback durations plot.

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Analysis - example (3)

22

● Using Trace Compass

● Critical path analysis of a wget request

● Computes dependencies between threads

● Only using data from the Linux kernel
○ Blocking system calls

Figure 5. Critical path analysis using Trace Compass.

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Demo

23

● Ping & pong nodes
○ Nodes exchange N messages every M milliseconds T times, then exit

● Link to instructions and Python code in a Jupyter Notebook
○ github.com/christophebedard/ros-world-2021-demo

ping
node

pong
node

ping

pong

...

ping

https://github.com/christophebedard/ros-world-2021-demo

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Demo - results

24

● Simple demo, ROS 2-level information only

Figure 6. Results for 1 sequence.

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Demo - results (2)

25

● Still a lot of information & many possibilities, especially if we add DDS/middleware instrumentation!

Figure 7. Overall demo results.

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Conclusion

26

● Tracing
○ Gather low-level runtime execution information
○ Use a low overhead tracer

● ros2_tracing
○ Instrumentation for the core of ROS 2
○ Tools to trace with LTTng

● Analysis
○ Correlate OS events with ROS 2 events
○ Analyze the aggregation of traces from multiple systems

● Future
○ Including the LTTng tracepoints in the Linux binaries
○ Instrumentation

■ Internal handling of messages, tracking messages across nodes
■ DDS

○ What would you like to see?!

Tracing ROS 2 with ros2_tracing - Christophe Bédard

Questions?

27

● github.com/christophebedard

● Important links
○ gitlab.com/ros-tracing/ros2_tracing
○ gitlab.com/ros-tracing/tracetools_analysis
○ lttng.org
○ ros2_tracing tutorial in RTWG docs:

bit.ly/RTWG_tracing_tutorial

https://github.com/christophebedard
https://gitlab.com/ros-tracing/ros2_tracing
https://gitlab.com/ros-tracing/tracetools_analysis
https://lttng.org/
https://bit.ly/RTWG_tracing_tutorial

