
Orocos - Yarp Binding User Guide

Charles Lesire
ONERA, Toulouse, France
charles.lesire@onera.fr

version 1.1

1 Introduction

The Orocos-Yarp binding package has been released on the RoboTIS project
website of Onera at http://robotis.onera.fr/orocos

It has been designed to automatically export Orocos components data ports
to the Yarp framework.

An extension has also been made to the DeploymentComponent to accept
incoming requests from Yarp nodes. These requests are binded to Orocos State
Machine execution, with the possibility to define the FSM parameters.

The package is under a LGPL licence.

2 Installation

The OroYarp library needs Orocos and Yarp to be installed:

• Orocos RTT version 1.10.x,

• Orocos OCL version 1.8.x,

• Orocos KDL to build KDL bindings,

• Boost program options and date time packages (tested with version 1.40),

• Yarp version 2.2.3 or later.

Installation is based on CMake (2.6 or later). The library will be installed
to:

• INSTALL DIR/bin for deployer-yarp binary,

• INSTALL DIR/include/robotis/oroyarp for header files,

• INSTALL DIR/lib for the binding toolkit.

INSTALL DIR is by default set to /usr/local.

1

http://robotis.onera.fr/orocos
http://www.orocos.org
http://eris.liralab.it/yarp/
http://www.gnu.org/licenses/lgpl.html
http://www.orocos.org/kdl

3 The OroYarp Toolkit

3.1 The YarpNode component

The Orocos-Yarp binding framework is carried by a ToolkitPlugin object. To
use it, you must call RTT::Toolkit::Import(OroYarp::YarpToolkit) from
your C++ code. Then you will be able to create a YarpNode from an existing
component. A YarpNode is a TaskContext that takes data ports from its original
component and binds them to Yarp. Listing 1 shows how to create a YarpNode
component.

Listing 1: YarpNode creation code�
TaskContext∗ yarpnode = OroYarp : : YarpNode : : createYarpNode(&myComp) ;
connectPorts (yarpnode , &myComp) ;
yarpnode−>s t a r t () ;
� �

The yarpnode component will now publish data to Yarp port as soon as your
component updates its data port (using DataOnPortEvent call-backs), and vice
versa.

3.2 Orocos supported types

Supported types are basic RTT types. Building the package with KDL support
provides KDL types conversion. Table 1 describes Orocos-Yarp type conversion
procedures.

Table 1: Orocos-Yarp type correspondence.
Orocos type Yarp bottle operation

i : int addInt(i)
d: double addDouble(d)
b: bool addInt(b)

s : std :: string addString(s)
v: std :: vector<double> ∀d ∈ v, addDouble(d)

v: KDL::Vector ∀i = 0 . . . 2, addDouble(v[i])
r : KDL::Rotation ∀i = 0 . . . 2, j = 0 . . . 2, addDouble(r(i, j))
f : KDL::Frame adds rotation matrix f.M and then frame origin f.p
t : KDL::Twist ∀i = 0 . . . 5, addDouble(t[i])

w: KDL::Wrench ∀i = 0 . . . 5, addDouble(w[i])

An example can be found on tests/yarpnode test.cpp file.

2

3.3 The ’bottle’ type

The toolkit also defines a ’bottle’ type usable by Orocos components and scripts.
A ’bottle’ is the Orocos type name for a Yarp Bottle. Orocos components
can then directly export Yarp Bottles understandable by any Yarp node. An
example can be found on tests/yarpbottle test.cpp file.

4 The deployer-yarp

The OroYarp library provides a Yarp version of the Deployer, namely the
deployer-yarp executable. It works as a classical OCL deployer, and provides
specific Yarp functionalities.

4.1 The yarpnode method

A yarpnode method allows to build a YarpNode corresponding to a loaded
component. It proceeds exactly the code of listing 1 with some extra test cases.

The deployer can export a component to Yarp at startup. This is requested
by setting the component server flag to true in the deployer configuration file.
Listing 2 shows an extract of the corresponding xml code.

Listing 2: Deployer configuration file�
<s t r u c t name=”MyComponent” type=”MyComponentClass”>

<s imple name=” Server ” type=”boolean ”><value>1</ value></ s imple>
< !−− −−>

</ s t r u c t>
� �
4.2 Scripting and Requests

The deployer opens two Yarp ports: one for scripting from Yarp, the other for
some kind of ”request management”.

4.2.1 Scripting from Yarp

The deployer scripting port is named ”/DeployerName/Scripting”. The incom-
ing string data are interpreted as script expression and are then directly executed
using the deployer scripting()->execute function.

4.2.2 Executing FSM from Yarp

The deployer request port is named ”/DeployerName/Request”. When some-
thing is received on this port, it is parsed and proceeded as a request to launch

3

a State Machine. The input format must be a string carried by a Yarp bottle.
This string must match the following regular expression:

[A− Za− z0− 9]+ [[\s] [∧\s]+]∗

The first word is interpreted as the FSM name. The following words (sepa-
rated by spaces) are interpreted as FSM parameters. Each parameter is updated
using its TypeInfo read function, defined in the TemplateTypeInfo structure
imported in the Orocos toolkit.

FSM must follow a specific design pattern to be runnable from Yarp nodes:

• The initial state of the FSM must be empty, as this state is used to set pa-
rameters values (the FSM is first activated, then parameters are modified,
and the FSM is finally started);

• An instance of the FSM must be created with default parameter values.

Only not running FSM can be launched from Yarp. Stopping a running
FSM is not performed by the deployer processing. An example can be found on
tests/yarpscripting* files.

5 Extending the Toolkit

The OroYarp toolkit can be extended to support your own Orocos-Yarp type
conversion. To map a type from Orocos to Yarp, you must add conversion func-
tions extending the YarpTypeConversion structure. Listing 3 gives an example
of a YarpTypeConversion code.

Listing 3: YarpTypeConversion structure for OrocosT�
template <>
struct StdYarpTypeConversion<OrocosT> :

public YarpTypeConversion<OrocosT , YarpT> {
stat ic bool copyYarpToOrocos (const YarpT& y , OrocosT& o) {

// The convers ion code , e . g . o = y . asDouble () ;
return true ;

} ;
stat ic bool copyOrocosToYarp (const OrocosT& o , YarpT& y) {

// The convers ion code , e . g . y . addDouble (o) ;
return true ;

} ;
} ;
� �

Then you must define your own toolkit that will register this type conversion
to OroYarp. It could be done by the code of listing 4.

See Orocos’ Extending Real-Time Toolkit web page for more detail on cre-
ating your own toolkit.

4

http://www.orocos.org/stable/documentation/rtt/v1.10.x/doc-xml/orocos-toolkit-plugin.html

Listing 4: OroYarp Toolkit registering OrocosT conversion�
class MyYarpToolkitPlugin : public OroYarp : : YarpToolkitPlugin {

public :
virtual std : : s t r i n g getName () { return ”MyYarpToolkit” ; } ;
virtual bool loadTypes () {

OroYarp : : YarpPortCreator : : In s tance ()
−>reg i s te rType<OrocosT>(”myOrocosType”) ;

return YarpToolkitPlugin : : loadTypes () ;
} ;

} ;
� �
6 Controlling the Yarp Fakebot from on Orocos

Controller

The OroYarp package provides an example of interaction between Orocos and
Yarp components. It uses the Yarp Fakebot tutorial, available in the Yarp
directory in example/tutorial. The sources are also included (and compiled)
in the OroYarp package. Figure 1 shows the complete example setup: the
Fakebot is embedded in a Yarp node, the Controller is executed by the Orocos
deployer, and the OroYarp package provides a Yarp node interface to connect
the controller and the bot.

Controller

O
ro

Y
ar

p
N

od
e

state

command

Fakebot

state

rpc

image

Yarp port

Orocos port

Figure 1: The Fakebot example setup.

The Controller reads the fakebot state (a 2D position vector) and sends a goal
position for its current control axis. Its behavior is described in algorithm 1.

To launch the example, you must execute the following command lines in
separate terminals:

1. yarp server : starts the Yarp naming service;

2. yarpview : starts the Yarp image viewer;

5

Algorithm 1 Controller behavior
loop

if ||state− current goal|| < delta then
new goal← rand()
send command ”set pos control axis new goal”

end if
end loop

3. robotis-yarp-fakebot --file fakebot.ini : starts the Yarp fakebot;
must be launched in directory example (where file fakebot.ini is);

4. robotis-yarp-controller --auto : starts the Orocos controller.

The robotis-yarp-controller command has the following options:

--help displays the allowed options;

--log-level Warning set the RTT log level (default is ’Warning’, ’Info’ dis-
plays controller information);

--view /view set the YarpView port name (used if auto-connect is on – default
is ’/yarpview/img:i’);

--auto set auto-connect on: creates the controller Yarp node and connects
Yarp ports.

If the controller is launched without the --auto option, the Controller Yarp
node must be created (yarpnode("Controller") in the deployer) and the fol-
lowing port connections must be set by hand:

• yarp connect /fakebot/camera /yarpview/img:i

• yarp connect /fakebot/motor/state:o /Deployer/Controller/state

• yarp connect /Deployer/Controller/command /fakebot/motor/rpc:i

Then the controller component must be started (Controller.start in the de-
ployer).

The view displays a background image on which a boat is moving. The
controller component gives goal position to the Fakebot, making its camera move
on one axis. When the goal has been reached, the controller draws randomly
a new goal and sends it again to the Fakebot. The example is described in a
movie (figure 2) available on the RoboTIS website.

6

http://robotis.onera.fr/orocos

Figure 2: Example movie screenshot.

7

	Introduction
	Installation
	The OroYarp Toolkit
	The YarpNode component
	Orocos supported types
	The 'bottle' type

	The deployer-yarp
	The yarpnode method
	Scripting and Requests
	Scripting from Yarp
	Executing FSM from Yarp

	Extending the Toolkit
	Controlling the Yarp Fakebot from on Orocos Controller

