
LDL> Rank-m Update

For ease of translation into code, we use zero indexed notation for all the mathe-
matical constructs in this document.
For a matrix M (resp. vector v), we denote by mi its i-th column (resp. vi its
i-th element).

Let H be a symmetric n× n matrix and (L, d) its LDL> decomposition.
Let Z be a n×m matrix and λ a vector of size m.
Our objective is to compute a decomposition for the rank-m updated matrix.

H ′ = H + Z diag(λ)Z>, (1)

= H +

m−1∑
i=0

λiziz
>
i . (2)

This is therefore equivalent to m successive rank-one LDL> updates.

1 Rank-one update:

Let z be a vector of size n and λ be a scalar.
We have

H = Ldiag(d)L>, (3)

=

n−1∑
i=0

dilil
>
i , (4)

H + λzz> = λzz> +

n−1∑
i=0

dilil
>
i . (5)

Since L is lower triangular with unit diagonal, li has exactly i leading zeros
followed by 1.
Assume z has at least i leading zeros. We show that dilil

>
i + λzz> can be

rewritten as axx> + byy>, where x has i leading zeros followed by 1, and y has
at least i+ 1 leading zeros.

1



x and y are linear combinations of li and z. One possible solution is:

a = di + λz2i , (6)

µ = λzi/a, (7)

b = λ− aµ2, (8)

y = z − zili, (9)

x = li + µy. (10)

This process allows us to iteratively increase the number of leading zero elements
of z by reducing it with li successively, until we end up with z being zero. The
values of a and x represent the updated components d′i and l′i of the new LDL>

decomposition.

2 Rank-m update

We can compute a rank-m update using m successive rank-one updates, giving
us the sequence (L(k), d(k))k∈{0,...,m}.

This corresponds to computing l
(k)
i,j in the lexicographical order over (k, j, i).

One benefit of doing this is that it allows for vectorization in the innermost loop
(i).
Numerically, the updates of L, d, Z and λ for each k are done in place. The
entire matrix L is repeatedly loaded and written to, which makes the algorithm
memory-bound.

So it is preferable to choose a computation order that computes l
(0)
i,j , . . . , l

(m)
i,j

in quick succession to avoid unnecessary loads and stores to the same memory
location.
Computing in the lexicographical order over (j, i, k) accomplishes that, but
sacrifices vectorization. So for optimal performance, these must be interleaved,
i.e., the nested loop structure would look like:

• iterate j over the columns of L,

• iterate i0 over the row blocks of L, skipping N rows,

• iterate k over the columns of Z,

• iterate i1 over the row block elements,

where N is a blocking parameter which must be a multiple of the machine
register size. Details about handling the remainder elements are omitted in this
analysis, but shouldn’t add much complexity.
This loads and stores L and d only once, but requires more memory to store all
of Z as all the columns must be available simultaneously.

The update of a column of L and each column of Z requires holding 2
constants per column of Z, (zi and µ from 6), the current value of l, and the
current value of z when k varies.

2



Assuming we process m0 columns at a time, this requires 2m0 + 2 N
Nreg

available

registers.
This means that for 16 available registers, we can process at most 7 columns of
Z at a time without spilling values on the stack.

The storage layout of Z must be so that the memory access is sequential for
the hardware prefetcher to easily predict the data access patterns. This means
that it is split into submatrices with number of columns at most m0. And for
each group, it is stored so that N elements from the first column come first,
followed by N elements from the second column, . . . , followed by N elements
from the m0-th column. Then the next N elements from the first column are
placed after that, and the pattern is repeated until all the elements have been
stored.

3


