
uBlas: Boost High Performance Vector
and Matrix Classes

Juan José Gómez Cadenas
University of Geneve and University of Valencia

(thanks to:
 Joerg Walter, uBlas co-author.
Todd Vedhuizem, ET co-inventor)

Vector and Matrix classes in C++

 Use of C++ vector and matrix classes for
scientific calculations typically results in poor
performance w.r.t Fortran or C. This is due
two several factors:
 Use of virtual functions (dynamic polymorphism)
 Temporaries

Polymorphism

 Standard tool in C++
 Requires virtual functions that have big

performance penalties
 Extra memory access
 Compiler cannot optimize around the virtual

function call. It prevents desired features such as
loop unrolling, etc.

 Virtual functions are acceptable if function is
big or not called very often

Polymorphism (II)

 Unfortunately, in scientific code some of the
most useful places for virtual functions are in
inner loop bodies and involve small routines

class HepGenMatrix {

public:

virtual ~HepGenMatrix() {}

virtual int num_row() const = 0;

virtual int num_col() const = 0;

virtual const double & operator()(int row, int col) const =0;

virtual double & operator()(int row, int col) =0

Virtual function dispatch to
operator () results in poor
performance

Static Polymorphism

 Replace dynamic polymorphism with static
(i.e, compile time) polymorphism

 Use of expression templates
 Expression templates heavily depend on the

famous Barton-Nackman trick, also coined
'curiously defined recursive templates'

Barton-Nachman trick

template class<T_leaf>

 class Matrix{
 public:

 T_leaf& assign_leaf(){
 return static_cast<T_leaf>(*this);}

 double operator () (int i, int j){ //delegate to leaf
 return assign_leaf()(i,j)

…

class symmetric_matric : public Matrix<symmetric_matrix>

Static Polymorphism at Work

 The trick is that the base class takes a
template parameter which is the type of the
leaf class. This ensures that the complete
type of an object is known at compile time. No
need for virtual function dispatch

 Methods can be selectively specialized in the
leaf classes (default in the base, overridden
when necessary)

 Leaf classes can have methods which are
unique to the leaf class

Temporaries

When you write:

Vector a(n), b(n), c(n);
 a = b + c + d;

The compiler does the following:

Vector* _t1 = new Vector(n);
for(int i=0; i < n; i++)

_t1(i) = b(i) + c(i);

Vector* _t2 = new Vector(n);
for(int i=0; i < n; i++)

_t2(i) = _t1(i) + b(i);

Temporaries(II)

for(int i=0; i < n; i++)

a(i) = _t2(i) + _t1(i) ;
delete _t2;

delete _t1;

So you have created and deleted two
temporaries!

Performance Implications

 For small arrays (HEP case!) the overhead of
new and delete result in very poor
performance (about 1/10 of C)

 For large arrays the cost is in the
temporaries. It depends on the operation. For
example, they are expensive for + operation

Expression Templates

 Invented independently by Todd Veldhuizen
and Daveed Vandevoorde

 The basic idea is to use operator overloading
to build parse trees.

 Take advantage of the basic fact that a class
can take itself as a template parameter

Example

Array A,B,C,D;
D=A+B+C;

The expression A+B+C could be represented by a type
such as:

X<Array, plus, X<Array, plus, Array>>

Consider:

struct plus{} ; // addition
class Array {}; // some array class

Example (cont)

// X represents a node in a parse tree

template<typename Left, typename Operation, typename Right>
class x{};

//The overloaded operator with does parsing for expressions of the

// form A+B+C+D…
Template<class T>
X<T, plus, Array> operator + (T, Array){

return x<T, plus, Array> ();

}

Example (cont)

With the above code, A+B+C is parsed like this:

Array A,B,C,D;
D=A+B+C;

X<Array, plus, Array> ()+ C;
=X<X<Array, plus, Array>, plus, Array> ();

uBlas

 Consistent use of expression templates to eliminate
virtual function calls and temporaries results in very
high performance (for a C++ standalone library)

 Carefully designed (boost pair reviewed) interface.
Maps Blas calls

 supports conventional dense, packed and basic
sparse vector and matrix storage layouts

 Symmetric, hermitian, triangular matrices, etc
 Template type (T=int, float, double, complex…)
 STL like iterators
 Proxies (ranges, slices) to access views of vector and

matrices

uBlas (ii)

 Extensive checking via consistent use of
exceptions

 Very well documented
 Part of the boost library (i.e, reliable

maintenance)

uBlas (III)

 Real High Performance libraries (like ATLAS)
are using platform specific assembler kernels

 Toon Knapen and Kresimir Fresl are working
on C++ bindings to such kernels, which
already allow the interfacing of uBLAS with
ATLAS

Comments on CLHEP matrix classes

 10 years old already (i.e, a success!)
 But:

 Use of virtual functions
 Inefficient array indexing M[][] (temp objects)
 Temporaries problems
 “Messy” interface

 Linear algebra functions are often part of the class
 M.inverse()???

Conclusion

 uBlas: Modern C++, very professional, very
well documented, part of boost.

 Fast
 “Blas compliant”
 Very clean interface

 Seems a very good candidate to replace
current CLHEP vector and matrix classes

