uBlas: Boost High Performance Vector

*ﬁ% and Matrix Classes

Juan José Gomez Cadenas
University of Geneve and University of Valencia

(thanks to:

Joerg Walter, uBlas co-author.
Todd Vedhuizem, ET co-inventor)



*‘W Vector and Matrix classes in C++

= Use of C++ vector and matrix classes for

scientific calculations typically results in poor
performance w.r.t Fortran or C. This is due

two several factors:
= Use of virtual functions (dynamic polymorphism)

= Temporaries



&W Polymorphism

= Standard tool in C++

= Requires virtual functions that have big
performance penalties

= Extra memory access

= Compiler cannot optimize around the virtual

function call. It prevents desired features such as
loop unrolling, etc.

= Virtual functions are acceptable if function Is
big or not called very often



Polymorphism (1)

= Unfortunately, in scientific code some of the
most useful places for virtual functions are In
iInner loop bodies and involve small routines

class HepGenMatrix { Virtual function dispatch to
. operator () results in poor

public: performance

virtual ~HepGenMatrix() {}

virtual int num_row() const = 0;

virtual int num_col() const = 0;
virtual const double & operator()(int row, int col) const =0;

virtual double & operator()(int row, int col) =0



&W Static Polymorphism

= Replace dynamic polymorphism with static
(l.e, compile time) polymorphism

= Use of expression templates

= EXxpression templates heavily depend on the
famous Barton-Nackman trick, also coined
‘curiously defined recursive templates'



Barton-Nachman trick

template class<T_leaf>
class Matrix{
public:
T leaf& assign_leaf(){
return static_cast<T _leaf>(*this);}

double operator () (inti, intj){ //delegate to leaf
return assign_leaf()(i,))

class symmetric_matric : public Matrix<symmetric_matrix>



w Static Polymorphism at Work

= The trick is that the base class takes a
template parameter which is the type of the
leaf class. This ensures that the complete
type of an object is known at compile time. No
need for virtual function dispatch

= Methods can be selectively specialized in the
leaf classes (default in the base, overridden
when necessary)

® | eaf classes can have methods which are
unique to the leaf class



Temporaries

When you write:

Vector a(n), b(n), c(n);
a=b+c+ d,

The compiler does the following:

Vector* _t1 = new Vector(n);
for(int i=0; i < n; i++)
_t1(i) = b(i) + c();

Vector* _t2 = new Vector(n);
for(int i=0; i < n; i++)
_t2(1) = _t1(i) + b(i);



ﬁw Temporaries(ll)

for(int i=0; 1 < n; i++)

a(i) = _t2() + _t1();
delete t2;
delete t1;

So you have created and deleted two
temporaries!



&m Performance Implications

= For small arrays (HEP case!) the overhead of
new and delete result in very poor
performance (about 1/10 of C)

= For large arrays the cost is in the
temporaries. It depends on the operation. For
example, they are expensive for + operation



Expression Templates

= |nvented independently by Todd Veldhuizen
and Daveed Vandevoorde

= The basic idea Is to use operator overloading
to build parse trees.

= Take advantage of the basic fact that a class
can take itself as a template parameter




Example

Array A,B,C,D;
D=A+B+C;

The expression A+B+C could be represented by a type
such as:

X<Array, plus, X<Array, plus, Array>>

Consider:

struct plus{} ; // addition
class Array {}; // some array class



Example (cont)

/| X represents a node in a parse tree
template<typename Left, typename Operation, typename Right>
class x{};

//The overloaded operator with does parsing for expressions of the
// form A+B+C+D...
Template<class T>
X<T, plus, Array> operator + (T, Array){
return x<T, plus, Array> ();



*ﬁ% Example (cont)

With the above code, A+B+C Is parsed like this:

Array A,B,C,D;

D=A+B+C,;

X<Array, plus, Array> ()+ C;

=X<X<Array, plus, Array>, plus, Array> ();



ET: Minimal impkementation

Of course 0 be wuseful wou nesd b0 Store data in the
parse tree (o.d. pointers to the arrays).

Hers i a minimal opiression templates implamantation
for 1-D arravs. First, the plus fUnction object:

gtruct plus {
public:
static double apply(doubla a, double by {
return ath;
s

L
The parss tree nodea:

tamplate<class T op, ¢lass Ti, clasg T2-
gtruct T {

Ti loftNoda_:

T2 rightloda_;

X(Ti ti, T2 t3)
: leftloda_(ti), TightFode (t2)
il

double operator[]{int i)
{ retum T_op: :applylaftiode_[i] .rightWoda_[i]):



Moy the array Class:

gtruct Array {
Array(doubles data, int W)
i3 : data_(data), ¥_CW)

S/ Assign an erpressiom to the arrgy
templata<class T_op. class Ti, class T2-
vold oporator=(T<T_cp.Ti.T2 orprossiom)

for (int 4=0; 41 < N_; ++i)
) data_[i] = expraezzion[i] ;

double operater[]{int i)
{ return data_[1]: }

double* data_:
imt N_:

¥
Anig the operator<-:

tamplatedclasy T
ﬁ{plus. T, Array> operator+(T a, Array T

return X<plus, T, Array>(a.b);
H



Seo the loop bedng built step by step:

D=L+E8+;
= X<pluz, Array, Array-(4,B) + C;
. I@E:I{Plﬁ:mﬂﬁamﬁamaﬁ}ﬂ'ﬁplm;
Array, Arrays(A.E) . C);

Then it matches 10 tamplate Array: :operator=:

D.oparator=(T<plus,X<plus, Array, Array>,
krray*(T<plus, Array, Array>(A,B),0) expression)

for (int i=0: 1 < N_: ++1)
data_[i] = expregzion[i];

!
See how ecpression]l] is evaluated by X: :eperater[:

data_[i] = plus::apply(L<plus,Array,
Array+(A,Bi[i], C[i]);
= plus::applyCAL[i],B[i]) + C[il;
= A[i] + B[i] + C[il;




uBlas

= Consistent use of expression templates to eliminate
virtual function calls and temporaries results in very
high performance (for a C++ standalone library)

= Carefully designed (boost pair reviewed) interface.
Maps Blas calls

= supports conventional dense, packed and basic
sparse vector and matrix storage layouts

= Symmetric, hermitian, triangular matrices, etc
= Template type (T=int, float, double, complex...)
= STL like iterators

= Proxies (ranges, slices) to access views of vector and
matrices



&Mﬂ uBlas (i

= Extensive checking via consistent use of
exceptions

= Very well documented

= Part of the boost library (i.e, reliable
maintenance)



w uBlas (lll)

= Real High Performance libraries (like ATLAS)
are using platform specific assembler kernels

= Toon Knapen and Kresimir Fresl are working
on C++ bindings to such kernels, which
already allow the interfacing of uBLAS with

ATLAS



w Comments on CLHEP matrix classes

= 10 years old already (i.e, a success!)

= But:
= Use of virtual functions
= |nefficient array indexing M[][] (temp objects)
= Temporaries problems

= “Messy” interface

= Linear algebra functions are often part of the class
= M.inverse()???



*M Conclusion

= uBlas: Modern C++, very professional, very
well documented, part of boost.

= Fast
= “Blas compliant”
= Very clean interface

= Seems a very good candidate to replace
current CLHEP vector and matrix classes



