Wild Magic Version 5.7
Installation Manual and Release Notes

Document Version 5.7.0
October 27, 2011

Contents

1 Introduction
1.1 License. . . . o o o v o e e
1.2 Copying the Distribution to Your Machine
1.3 Environment Variables L e
1.3.1 Microsoft Windows 7. e
1.3.2 Macintosh e
1.3.3 Linux . . . o e e e

2 Prerequisites for Compiling and Using Wild Magic
2.1 Microsoft Visual Studio 2005 (VC80), 2008 (VC90), or 2010 (VC100)
2.2 Apple Xcode 4.1 and Mac OS X 10.7 [Lion] oo
2.3 Microsoft DirectX L e
2.4 OpenGL and Extension Wrappers it
2.5 NVIDIA’s Cg Toolkit o e e e

3 Compiling the Distribution
3.1 Automatic Builds with Microsoft Visual Studio
3.2 Automatic Builds on Macintosho
3.3 Automatic Builds on Linux L
3.4 Compiler Support for Windows Dynamic Link Libraries

3.5 Finding Windows Dynamic Link Libraries at Run-Time

4 Release Notes: Differences from Wild Magic 4
4.1 Preprocessor Defines Specified in Header Files
4.2 Reduced Number of Build Configurations

4.3 Memory Managemento e 17

4.4 New Classes for Affine Algebra 18
4.5 Change to Matrix Operations in Shaders 18
4.6 Raw Data Formats for Buffers, Textures, and Effects 19

4.6.1 Visual Objects e e e e 20

4.6.2 Texture Objects e e e e e e 20

4.6.3 Effect Objects e 21
Tools 23
5.1 BmpColorToGray o . . o e 23
5.2 BmpToWmtf e 23
5.3 GenerateProjectso 24
5.4 ObjMtIImporter e e e e e e 24
5.5 WmifxCompiler L e 24
5.6 WmtfViewer. L e e e 24
Miscellaneous 25
6.1 User-Defined Syntax Coloring« . . . i i 25
6.2 Display of Debug Data e 26
6.3 Changing the Icon for a File Type in Microsoft Windows 7 26

1 Introduction

You are about to install Wild Magic 5.7 (WMS5). Version 5.0 shipped with the book, Game Physics, 2nd
edition. The CD-ROM contains source code that compiles and runs on platforms using Microsoft Windows,
Linux, and Macintosh OS X. The development environments we tested on are the following:

e Microsoft Windows 7 (32-bit)

— Intel Core2 Quad Q9550, 2.83 Ghz

— NVIDIA 9800 GT dual SLI (driver 270.61)

— OpenGL 3.3.0

DirectX 9 (June 2010 SDK)

Microsoft Visual Studio 2005, Version 8.0.50727.867
Microsoft Visual Studio 2008, Version 9.0.30729 SP

— Microsoft Visual Studio 2010, Version 10.0.30319.1 RTMRel

e Microsoft Windows 7 (64-bit)

— Intel Core i7 Q740, 1.73 Ghz

NVIDIA GeForce GTX 460M (driver 259.64)

OpenGL 4.0

DirectX 9 (June 2010 SDK)

— Microsoft Visual Studio 2010, Version 10.0.30319.1 RTMRel

e Macintosh OS X 10.7 (Lion)

— Intel Core2 Duo, 2.26 GHz
NVIDIA 9400 (driver NVIDIA-1.6.6)
OpenGL 2.1

Xcode 4.1, llvm-gcc version 4.2

e Red Hat Fedora Core 12 Linux

— Intel Pentium D 840 (dual core), 3.2 GHz

— NVIDIA 9500 GT (driver 190.42)

OpenGL 3.2.0

gee version 4.4.2 20091222 (Red Hat 4.4.2-20)

We no longer test on Macintosh PowerPC computers. Although the code should run on Macintosh OS 10.6.8
(Snow Leopard), we have only one Intel Macintosh test machine, which now has Macintosh OS X 10.7 (Lion)
and Xcode 4.1. We no longer test on Microsoft Windows XP or Vista.

You should visit our web site regularly for updates, bug fixes, known problems, new features, and other
materials. The update history page always has a date for the last modification, so you should be able to
track what you have or have not downloaded. The source files themselves are labeled with a version number
of the form 5.minor.revision, where minor is the minor version in which the file shipped and where revision
is the number of times the file has been revised. The source files in the release version Wild Magic 5.0 are
labeled with 5.0.0.

1.1 License

Wild Magic 5 uses the Boost License. The license in its entirety is listed next.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

1.2 Copying the Distribution to Your Machine

You may copy the book CD-ROM contents directly to your hard disk. The top-level folder of the distribution
is named GeometricTools. If you have a zip file, the organization of the distribution is the same. It does not
matter where you copy the distribution. The projects all use relative paths and do not rely on the top-level
directory being located at the root of the drive. Data files are found using an environment variable that you
must create. The folder hierarchy is shown on the next page.

http://www.boost.org/LICENSE_1_0.txt

GeometricTools

WildMagich
Bin // convenient place for tool executables
Data // various data files used by Wild Magic
Bmp // Microsoft Windows BMP files
CgShaders // NVIDIA Cg FX files
CompiledDirectX9 // compiled FX files for DX9 profiles
CompiledOpenGL // compiled FX files for OpenGL profiles
Im // Wild Magic image files for image processing
Wmfx // Wild Magic compiled FX files
Wmof // Wild Magic scene object files
Wmtf // Wild Magic texture files
WmvE // Wild Magic visual files (vertex formats, vertex and index buffers)
Documentation // information about the Wild Magic distribution
LibApplications // application layer (platform-independent files in top-level folder)
AglApplication // Macintosh application layer (deprecated, for 0S X 10.6 [Snow Leopard])
GlutApplication // Macintosh application layer (for 0S 10.7 [Lion])
GlxApplication // Linux application layer
WinApplication // Microsoft Windows application layer
LibCore // core system
LibGraphics // graphics system
Renderers // renderer interface (platform-independent files in top-level folder)
AglRenderer // Apple OpenGL renderer (deprecated, for 0S X 10.6 [Snow Leopard])
Dx9Renderer // Microsoft Windows DirectX 9 renderer
GlutRenderer // Glut OpenGL renderer (for 0S X 10.7 [Lion])
GlxRenderer // X Windows OpenGL renderer
OpenGLRenderer // platform-independent OpenGL renderer files
WglRenderer // Microsoft Windows OpenGL renderer
LibImagics // platform-independent image processing system
LibMathematics // platform-independent mathematics system
LibPhysics // platform-independent physics system
License // contains a copy of the Boost License
SampleGraphics // sample applications for graphics
SamplelImagics // sample applications for image processing
SampleMathematics // sample applications for mathematics
SamplePhysics // sample applications for physics
SDK // top-level folder for headers and libraries
Include // headers copied from the engine folders
Library // compiled libraries for the engine
Debug // compiled static libraries for debug builds
DebugDLL // compiled dynamic libraries for debug builds
Release // compiled static libraries for release builds
Release // compiled dynamic libraries for release builds
Tools // tools to support development
BmpColorToGray // convert 24-bit color BMP to 24-bit gray BMP
BmpToWmt £ // convert 24-bit color BMP to Wild Magic WMTF file
GenerateProjects // create application project files
ObjMtlImporter // source code for loading .obj and .mtl files
WmfxCompiler // Create *.wmfx from *.fx (requires NVIDIA Cg installed)
WmtfViewer // viewer for *.wmfx files containing 2D textures

The Samplex* folders contain many applications. Listing them here would make the displayed hierarchy
difficult to read.

1.3 Environment Variables

WMS5 uses relative paths and supports a list of paths for searching for data files. To accomplish this, the
application layer accesses an environment variable, WM5_PATH, whose value must be set to the installation
location of WM5. Each platform has a different approach to setting an environment variable. The following
examples are based on the assumption that the top-level folder GeometricTools was placed in the root of
the hard drive. If you copied the top-level folder elsewhere, modify the paths in the examples accordingly.

If you are running Microsoft Visual Studio and change an environment variable or add new ones, you need

to exit Visual Studio and restart it. When Microsoft Visual Studio starts, it loads the current environment
variables and makes copies. The restart is necessary for it to detect your changes.

1.3.1 Microsoft Windows 7
You may set an environment variable by using the Control Panel. In the Control Panel window, select the

“System and Maintenance” link. In the window that appears, select the “System” link. On the left side of
the window that appears, select the “Advanced system settings” link. You will see the dialog

System Properties ﬁ

Computer Name | Hardware | Advanced |S)'sie.-m Protection | Hﬂmnte|

You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects, processor scheduling, memony usage, and virtual memaonye

IJzer Profiles
Deskiop settings related to your logon

Startup and Recovery
System startup, system failure, and debugaing information

Settings...

[Environment Vanables...]

oK || Cameel || 2opy

Select the Environment Variables button. You will see the dialog

Environment Variables

LIser variables for yvo

urlogin

Variable

CG_BIN_PATH
CG_INC_PATH
CG_LIB_PATH
CLASSPATH

Value

C:\Program Files\MVIDIA Corporation'C...
C:\Program Files\NVIDIA Corporation’C...
C:'\Program Files'\MVIDIA Corporation'C. ..

.;C:\BorlandJBuilder 2006Yjdk 1. SYjreib. ..

| mew.. || Edit.. || Delete |
System variables
Variable Value i
CG_BIN_PATH C:'\Program Files\MVIDIA Corporation'C. .. L4
CG_IMC_PATH C:'\Program Files'\MVIDIA Corporation'C. ..
CG_LIB_PATH C:'\Program Files\MVIDIA Corporation'C...
CLASSPATH C:'Program Files\Common Files\Compu,., ™

[

MNew.. || Edit..

H Delete]

| QK | [Cancel

)

where yourlogin will actually be your user name. You may add a new environment variable to apply only
to your account or to the entire system as a whole. We add the WM5_PATH variable to the entire system. In
this case, select the New button under the System Variables listing. The following dialog appears

r

MNew System Variable

==

Variable name:

Variable value:

Ok

Cancel

Enter in the Variable name edit control the symbol WM5_PATH. Enter in the Variable value edit control the
location of the source code distribution. For example, if the top-level folder GeometricTools was placed in

the root of the C drive, you would enter

C:\GeometricTools\WildMagich

1.3.2 Macintosh

With the introduction of Mac OS X 10.7 [Lion], access to environment variables via the library function
getenv appears to have been disabled. In previous versions of the operating system, to have environment
variables automatically loaded when logging in, you need to have a file

/Users/YOURLOGIN/ .MacOSX/environment.plist
whose contents include a dictionary entry for Wild Magic 5, as illustrated next.

<?7xml version="1.0" encoding="UTF-8"7>

<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>WM5_PATH</key>
<string>/Users/YOURLOGIN/GeometricTools/WildMagic5</string>

</dict>

</plist>

You must replace YOURLOGIN by your actual login name. A skeleton file containing this information is in
the GeometricTools/WildMagich folder in the distribution. If you already have an environment.plist
file on your machine, you will have to edit it and add the path information. If you add or modify
environment.plist, you should log out and then log in so that the new definitions are loaded.

On Mac OS X 10.7 [Lion], the environment . plist mechanism still appears to work from the perspective of a
shell. When you run a Terminal window and type ‘set’, you will see a list of the current environment variable,
including the WM5_PATH variable that was loaded at login. Unfortunately, a call to getenv("WM5_PATH")
returns a null pointer. The same is true for other important environment variables such as USER. The
workaround we use for now in WmbApplication.cpp is the following. The root folder WildMagich has a file
named wmbpath.txt. Edit this file and replace the path by the one that you added to environment.plist.
Copy this file to the .Mac0SX folder. Launching a shell from within a program and executing a command
still appears to work. So in WmbApplication.cpp we have

#ifndef __APPLE__
Application::WMSPath = Environment::GetVariable ("WM5_PATH");
#else

if (system("cp ~/.MacOSX/wmbpath.txt tempwmbpath.txt") == 0)

std::ifstream inFile("tempwmbpath.txt");
if (inFile)

{
getline(inFile, Application::WM5Path);
inFile.close();
system("del tempwmSpath.txt");
}
}
#endif

if (Application::WM5Path == ""
{

assertion(false, "Please set the WM5_PATH environment variable.\n");
std::ofstream outFile("ApplicationError.txt");

if (outFile)

{

outFile << "Please set the WM5_PATH environment variable.\n";
outFile.close();
}
return INT_MAX;
¥
// Other application-layer code...

1.3.3 Linux
We use Red Hat Fedora Core 12 with a Bash shell and define the following variable in the .bashrc file,
WM5_PATH=/home/YOURLOGIN/GeometricTools/WildMagic5 ; export WM5_PATH

You must replace YOURLOGIN by your actual login name. For example, if you started with the default .bashrc
file, you would modify it to look like

.bashrc
WM5_PATH=/home/YOURLOGIN/GeometricTools/WildMagic5 ; export WM5_PATH

User specific aliases and functions
Source global definitions
if [-f /etc/bashrc]; then
. /etc/bashrc
fi

The actual path depends on YOURLOGIN and where you copied the Wild Magic distribution. The .bashrc
file is processed when you login. However, if you modify it, you may process it by executing

source .bashrc

from a terminal window. For other versions of Linux or other shells, consult your user’s guide on how to
create an environment variable.

2 Prerequisites for Compiling and Using Wild Magic

Wild Magic contains a lot of code for multiple platforms and graphics APIs. As such, there is no go button
you can press and have everything set up properly. We are not in the business of writing installers for the
platforms we support, so you must set up your own environment for our code to work properly.

2.1 Microsoft Visual Studio 2005 (VC80), 2008 (VC90), or 2010 (VC100)

We use Microsoft Visual Studio 2005, 2008, and 2010 for compiling WM5. We do not provide support for
previous versions of Microsoft Visual Studio. Fxpress editions of these development kits are freely available
from Microsoft’s web site.

You might have constraints that require you to use a previous version; for example, you might have third-
party libraries that were compiled with a previous version and you need Wild Magic libraries to be compiled
with that same version. Three options to deal with this:

e Contact the vendor of your third-party libraries and request versions compiled with Microsoft Visual
Studio 2005, 2008, or 2010.

e Create your own Wild Magic project file for the version of Microsost Visual Studio you are using. The
simplest thing to do is copy all the source and header files from the Wild Magic libraries into your
project’s working directory. You should select only one type of renderer and one type of application;
for example, if you want to use only DirectX 9, then copy the LibGraphics/Renderers/Dx9Renderers
files into your folder but not the files of the other subdirectories of LibGraphics/Renderers. Do the
same for the application layer (if you need this library). You must define some preprocessor values. In
the current example, you need to define WM5_USE_DX9 and WM5_USE_PRECOMPILED HEADERS. If you chose
OpenGL, you need instead WM5_USE_OPENGL instead of the DirectX 9 define.

e Try changing the version number in the VCPROJ files to whatever version you are using. The version
number is on the fourth line of the project file. We cannot guarantee this will work, although from
time to time we have tried this change and it appeared to work (at least for version 8 when changing
from version 9).

Be aware that older versions of the compiler might not be able to compile some of our files, because the
compiler is not as ANSI compliant as the later versions.

2.2 Apple Xcode 4.1 and Mac OS X 10.7 [Lion]

Consider this mainly a section of issues (and complaints). Apparently, Apple is pushing developers to-
wards using only Cocoa and Objective C, and to obtain OS services only through them. This is making it
increasingly difficult for us to provide portable code.

e As mentioned in Section 1.3.2, getenv returns only null pointers. We had to hack the application layer
in order to set our WM5_PATH variable.

e Much of Apple OpenGL (AGL) is deprecated. It has been for some time, but with Mac OS X 10.7
and Xcode 4.1, enough of the window-based setup has been removed, so our AGL code is broken. We
replaced this with GLUT, which is a minimal application layer that is not really sufficient even for
some of our sample applications. At some time we will spend time to write a Cocoa base layer and
make callbacks into our C++ code, but it is not clear when we will have the time (or desire) to do so.

e The Xcode 4.1 application interface has a recommended setting of writing compiler output to hidden
folders off the user’s home directory. We left the setting this way. However, when you launch the
command line compiler as our shell script does for building everything, the compiler output is instead
written to subfolders of the application project directories. This means that command-line compiling
and IDE-based compiling write to different output directories.

e When running the debugger from Xcode 4.1, the default debugger is GDB, but the code is compiled
with LLVM GCC. The GDB debugger will generate an error message about not finding an executable.
You have to Edit Scheme for each configuration and change the debugger to LLDB. Unfortunately,
this setting is not saved in the project files, only in the user-specific folders generated by Xcode.

10

2.3 Microsoft DirectX

If you plan on compiling the DirectX projects, you must download the DirectX SDK from Microsoft’s website
and install it on your machine. WM5 was tested using the DirectX 9 SDK (June 2010), but there should
not be problems using later updates of DirectX 9. We have not yet written renderers for DirectX 10 and
DirectX 11.

2.4 OpenGL and Extension Wrappers

We do not use GLUT or third-party extension wrappers. If you want to use an extension wrapper, try
GLEW, which is freely downloadable. We have rolled our own extension wrapper. Currently, we support
only those ARB and EXT extensions that are used by Wild Magic. We will add support for the other
extensions as needed.

Our wrapper is designed to call an OpenGL extension function, if it exists, but to ignore it otherwise. This
guarantees that an OpenGL-based application will not crash in an attempt to dereference a null function
pointer. The wrapper also allows you to hook into the system for such things as reporting whether extensions
exist and/or are used, for profiling the OpenGL calls, or for call-stack tracing during a drawing operation.

Each extension function wrapper is effectively one of two forms. For functions not returning a value,

void GTglFunction (typeO param0O, typel paraml, ...)

{
GT_ENTER_FUNCTION (glFunction) ;
if (glFunction)

{
GT_NONNULL_FUNCTION(glFunction) ;
glFunction(param0,paraml,...);

}

else

{
GT_NULL_FUNCTION(glFunction);

}

GT_EXIT_FUNCTION(glFunction) ;

For functions returning a value,

rettype GTglFunction (typeO paramO, typel paraml, ...)
{
rettype tResult;
GT_ENTER_FUNCTION(glFunction);
if (glFunction)
{
GT_NONNULL_FUNCTION (glFunction) ;
tResult = glFunction(param0,paraml,...);

11

http://glew.sourceforge.net/

else
{
GT_NULL_FUNCTION(glFunction);
tResult = nullRetValue;
}
GT_EXIT_FUNCTION(glFunction) ;
return tResult;

The default behavior is determined by the macros starting with GT_ and are defined by the preprocessor to
expand to nothing. You can implement the macros as desired to support your development environment. For
example, profiling amounts to using a timer and starting the timer in GT_ENTER_FUNCTION and stopping the
timer in GT_EXIT_FUNCTION. Call-stack tracing amounts to reporting the function being entered and exited
by use of these same macros.

To add new behavior, you must re-implement the preprocessor definitions in the file Wm5G1Plugin.h and
add the implementations to the source file, Wm5G1Plugin. cpp.

2.5 NVIDIA’s Cg Toolkit

If you are going to write shader programs to be used by Wild Magic, you need to have NVIDIA’s Cg Toolkit
installed. You can download this from NVIDIA’s web site. We have been using the command line compiler,
cgc version 3.0.0007, build date Jul 22 2010, on Microsoft Windows machines. We have also tried
the Macintosh version, and it works equally as well.

It is possible to use HLSL as long as the output is text-string assembly. See LibGraphics/LocalEffects
for examples of effects that were created manually in the engine. You should be able to mimic this and use
your HLSL strings. The WmfxCompiler tool can be modified to generate binary resources for HLSL, but we
have not yet gone down that path, but will for the Malleable Mathematics Library (support for GLSL and
HLSL separately, no unified shader handling).

3 Compiling the Distribution

The method for compiling the libraries and applications depends on which platform you are working on. If
you plan on installing the source code on only one platform, you need only read the subsection related to
that platform. Each platform has scripts to automatically compile the distribution.

If you choose to manually compile the distribution, before attempting to compile samples, you must compile
the library projects LibCore, LibMathematics, LibImagics, LibPhysics, LibGraphics, and LibApplication.
The order of compilation is required:

1. Compile LibCore first.

2. Compile LibMathematics second. It depends on LibCore.

3. Compile LibImagics, LibPhysics, and LibGraphics. The order of these three projects is not important,
but they all depend on LibMathematics.

12

http://www.nvidia.com

4. Compile LibApplications. It depends on all the previous libraries.

The build configurations for the libraries include static library creation and dynamic library creation. The
graphics and applications libraries also require you to select between DirectX9 and OpenGL. The only
sample that uses the dynamic libraries is BillboardNodes, which illustrates how to set up an application
for dynamic libraries.

The graphics library and applications library also have a Debug GLUT configuration, but this exists only to
test code that does not work on the Macintosh GLUT-based distribution. The BlendedAnimation project
has a Debug GLUT configuration, which illustrates how to set up to use GLUT (we do not recommend this
except on the Macintosh).

3.1 Automatic Builds with Microsoft Visual Studio
Open the solution file
GeometricTools/WildMagic5/WildMagic5.sln

This includes all the projects for the libraries and sample applications. You have four configurations to
choose from: Dx9 Debug, Dx9 Release, Wgl Debug, or Wgl Release. If you build all configurations, be aware
that this will take a long time and a lot of disk space. And, yes, Microsoft Visual Studio will use all available
cores.

3.2 Automatic Builds on Macintosh

Open a Terminal window and change directory to
GeometricTools/WildMagic5h/

Execute the shell script
./MacBuildWm5.sh DebugStatic build

for the debug static library configurations or
./MacBuildWm5.sh ReleaseStatic build

for the release static library configurations. You can also compile dynamic libraries using DebugDynamic or
ReleaseDynamic. The only sample that has dynamic configurations is BillboardNodes, which illustrates
how to set up an application for dynamic libraries. To remove the results of the build, replace the word
build on the command line by clean.

13

3.3 Automatic Builds on Linux

Open a Terminal window and change directory to
GeometricTools/WildMagich/

Execute the command
make CFG=Debug -f makefile.wmb

for the debug static library configurations or
make CFG=Release -f makefile.wmb

for the release static library configurations. You can also compile dynamic libraries using DebugDynamic or
ReleaseDynamic. To remove the results of the build, add the word clean after the word make.

3.4 Compiler Support for Windows Dynamic Link Libraries

To support dynamic link libraries (DLLs) under Microsoft Windows, the source code has symbols that need
to be exported from the libraries and imported into the applications. Special keywords exist in order for the
compiler to generate or locate these symbols,

__declspec(dllexport) // for exporting symbols
__declspec(dllimport) // for importing symbols

The problems with such a mechanism for dynamic libraries is that the header files must use dllexport for
exporting and dllimport for importing. Which of these it is depends on the context in which the header
file is processed, so these keywords may not be hard-coded into the source code. For example, the Core
library project must export the symbols but any client project that links to the Core library must import
the symbols. The Core library has a file named Wmb5CoreLIB.h, whose contents are

#if defined (WM5_CORE_DLL_EXPORT)

// For the DLL library.

#define WM5_CORE_ITEM __declspec(dllexport)
#elif defined(WM5_CORE_DLL_IMPORT)

// For a client of the DLL library.

#define WM5_CORE_ITEM __declspec(dllimport)
#else

// For the static library or Linux/Macintosh.

#define WM5_CORE_ITEM
#endif

The LibCore project includes in its list of preprocessor definitions the symbol

14

WM5_CORE_EXPORT_DLL

During compilation of the Foundation library, __declspec(dllexport) is active, which lets the compiler
know that the library symbols must be tagged for export. The LibMathematics project is a client of the
LibCore library and includes in its list of preprocessor definitions the symbol

WM5_CORE_IMPORT_DLL

During compilation of the Mathematics library, __declspec(dllimport) is active, which lets the compiler
know that the Core library symbols used by the Mathematics library are being imported. The symbols
are accessible because the LibMathematics project links in the DLL library stub that was generated by the
LibCore project.

The LibMathematics project itself has symbols that need to be exported for use by clients. The clients them-
selves must specify that they need to import the symbols. Thus, you will find a file WmSMathematicsLIB.h
in the LibMathematics project, whose contents are

#if defined(WM5_MATHEMATICS_DLL_EXPORT)

// For the DLL library.

#define WM5_MATHEMATICS_ITEM __declspec(dllexport)
#elif defined (WM5_MATHEMATICS_DLL_IMPORT)

// For a client of the DLL library.

#define WM5_MATHEMATICS_ITEM __declspec(dllimport)
#else

// For the static library or Linux/Macintosh.

#define WM5_MATHEMATICS_ITEM
#endif

It is insufficient to have a single file to control whether importing or exporting is active and that works for
multiple libraries, because a client can have the need to import and export symbols. To export symbols,
the library project defines WM5_MATHEMATICS DLL_EXPORT. To import symbols, the application client defines
WM5_MATHEMATICS DLL_IMPORT. Each library project in the WMS5 distribution defines such a header file to
enable importing and exporting of symbols. The Liblmagics project has associated preprocessor definitions

WM5_IMAGICS_IMPORT_DLL, WM5_IMAGICS_EXPORT_DLL
The LibPhysics project has associated preprocessor definitions
WM5_PHYSICS_IMPORT_DLL, WM5_PHYSICS_EXPORT_DLL
The LibGraphics project has associated preprocessor definitions
WM5_GRAPHICS_IMPORT_DLL, WM5_GRAPHICS_EXPORT_DLL
It is important to understand that you must include one or more of these preprocessor definitions in your
projects when you want to use DLL versions of the WM4 libraries. The BillboardNodes sample appli-

cation contains debug and release configurations that use the dynamic libraries, so you should look at the
configuration settings to see how to generate your own configurations.

15

3.5 Finding Windows Dynamic Link Libraries at Run-Time

The compiled WM35 libraries are stored in the following directories:

GeometricTools/WildMagic4/SDK/Library/Debug
GeometricTools/WildMagic4/SDK/Library/DebugDLL
GeometricTools/WildMagic4/SDK/Library/Release
GeometricTools/WildMagic4/SDK/Library/ReleaseDLL

The subdirectories ending in DLL contain the dynamic link libraries. The names of the debug DLLs end in
a d, but the release DLL names do not. For example, there are libraries

GeometricTools/WildMagic5/SDK/Library/DebugDLL/Wm5Core100d.d11l
GeometricTools/WildMagic5/SDK/Library/ReleaseDLL/Wm5Corel100.d11

created by Microsoft Visual Studio 2010 (version 10.0, thus the suffix of 100 on the library names). When
a sample application is compiled and linked to use the core dynamic libraries, the run-time environment
must find them. The current working directory is checked first. If required DLLs cannot be found in the
current working directory, the directories in the PATH environment variable are searched for the DLLs. To
support testing and running of all possible configurations, we add a couple of paths to the PATH environment
variable. These paths use the WM5_PATH environment variable discussed previously in this document. That
discussion mentioned how to create new environment variables for Windows, so you may add the new
variables accordingly. The PATH environment variable may be modified using the same dialogs. We have
in our system environment:

WM5_PATH=C:\GeometricTools\WildMagich
WM5_PATH_BIN=C:\GeometricTools\WildMagic5\Bin

WM5_PATH_DEBUG_DLL=C: \GeometricTools\WildMagic5\SDK\Library\DebugDLL
WM5_PATH_RELEASE_DLL=C:\GeometricTools\WildMagic5\SDK\Library\ReleaseDLL

This assumes the distribution is located in the root of the C drive. Modify these as needed based on where
you copied the Wild Magic distribution. We then modify the PATH environment variable to include these.
For example, you can append these to your current path using the syntax

PATH=<currentpath>;%WM5_PATH_BINY;%WM5_PATH_DEBUG_DLLY; %WM5_PATH_RELEASE_DLLY

4 Release Notes: Differences from Wild Magic 4

Several important concepts occur in Wild Magic 5 that either were not in or were handled differently in Wild
Magic 4. A few are mentioned here, but you should also look at

Documentation/WildMagicb0verview.pdf

16

4.1 Preprocessor Defines Specified in Header Files

Each library has a header file that contains preprocessor defines. You may enable or disable these according
to your needs. You should eventually read through all these files to see what control you have over the
compilation.

For example, the core library, LibCore, has a header file named Wm5CoreLIB.h. The header wraps the
platform-dependent information and exposes it based on flags provided by the compiler at hand-the com-
piler specifies them or you have added defines to the build system for that compiler. One of these flags,
WM5_USE_MEMORY, is used to determine whether to use Wild Magic’s memory management system which is
used to track memory leaks.

As another example, the graphics library, LibGraphics, has a header file named Wm5GraphicsLIB.h. One
of the commented out defines is WM5_QUERY_PIXEL_COUNT. During debugging, you might want to diagnose a
drawing problem where some object is not renderer when you believe it should be. If you enable this define,
the Renderer: :DrawPrimitive function has code exposed that queries the graphics driver for the number
of pixels drawn.

4.2 Reduced Number of Build Configurations

Wild Magic 4 had build configurations for debug, release, debug with memory management enabled, release
with memory management enabled, for static or dynamic libraries, for various renderer types, and so on. The
maintenance of so many configurations took a lot of time, which was increased even more by the technical
support time for answering novices’ questions with limited experience about what configurations are and
how to use a development environment.

Wild Magic 5 has a greatly reduced number of build configurations to ease the maintenance and technical
support load. We did not provide dynamic library configurations for Microsoft Windows or Macintosh OS
X in Wild Magic 5.0 through 5.3. However, we have re-added dynamic library support as of Wild Magic 5.4.

LibCore, LibMathematics, LibImagics, and LibPhysics are independent of graphics APIs. They each have
configurations, Debug, DebugDLL, Release, and ReleaseDLL. LibGraphics and LibApplications depend on the
graphics API, so they have eight configurations, Dx9 Debug, Dx9 DebugDLL, Dx9 Release, Dx9 ReleaseDLL,
Wgl Debug, Wgl DebugDLL, Wgl Release, and Wgl ReleaseDLL. All libraries have an additional configura-
tion, NoPCH, which disables precompiled headers. These are for our own use to catch problems with source
files that require inclusion of certain header files (precompiled headers can hide such dependencies).

4.3 Memory Management

We have a class called Memory in the core library. It allows you to track memory usage and determine whether
there are memory leaks. In Debug builds, when an application terminates, a file called MemoryReport.txt
is written to the project folder. If there are memory leaks, the file contains information about each leak. If
there are no memory leaks, the file is empty.

The class also has the ability to use the dimension of the allocation. The function new allocates a singleton,
whereas the function new[] allocates a 1-dimensional array. We explicitly create allocators and deallocators
for arrays with more than one dimension. These are wrapped by macros

17

MyClass* objectO = newO MyClass(parameters); // allocate a singleton

MyClass* objectl = newl<MyClass>(bound0); // allocate a 1D array of objects

MyClass** object2 = new2<MyClass>(boundO,bound1); // allocate a 2D array of objects

MyClass*** object3 = new3<MyClass>(boundO,boundl,bound2); // allocate a 3D array of objects
MyClass**x* object4 = new4<MyClass>(boundO,boundl,bound2,bound3); // allocate a 4D array of objects

deleteO(object0);
deletel(objectl);
delete2(object2);
delete3(object3);

The actual number of memory allocations is minimized (n malloc calls for an n-dimensional array). The
Memory class tracks the current pool of dynamic allocations (see the msMap member).

The class Pointer0 supports reference-counted objects and automatic destruction when the reference count
goes to zero. WM4 had such a class for singleton objects that were dynamically allocated; the class was
called Pointer. WMS5 has additional smart-pointer classes for multidimensional arrays. These classes also
track the current pool of allocated smart-pointer objects (see the class PointerBase).

The Memory class is enabled in Debug builds but disabled in Release builds. In the latter case, the newN and
deleteN macros wrap implementations using standard new and delete.

4.4 New Classes for Affine Algebra

We have added class HPoint, which represents a homogeneous point (z,y, z,w). A derived class is APoint,
which represents a point of the form (z,y, z,1). Another derived class is AVector, which represents a vector
of the form (x,y,2,0). The derived classes do not have virtual functions, so they each store a 4-tuple.
Normally, a derived class destructor is virtual. A nonvirtual destructor hides the base-class destructor, so if
you were to delete a derived-class object via a base-class pointer, the derived-class constructor would not be
called. This is not a problem for us because (1) we do not reference the derived-class objects via base-class
pointers (or references) and (2) the destructors perform no actions, so there are no side effects that normally
you would want to ensure.

We also added a class HP1lane that represents a plane as a 4-tuple, and a class HQuaternion that represents
a quaternion. We have added a class HMatrix that represents a 4 x 4 homogeneous matrix.

All these classes implement affine algebra, with the important distinction maintained between point and
vector. Moreover, the classes are written only for 32-bit floating-point numbers. Our goal is to provide
implementations for the vector and matrix operations that use Intel’s SSE and the PowerPC’s Altivec
instructions for fast vector-matrix algebra. It is necessary to have 4-tuples for the SIMD registers and for
the necessary macros that guarantee proper alignment in memory.

The Vector3 and Matrix3 classes do not satisfy the 4-tuple requirement for SIMD support, but we were
unwilling to immediately deprecate the classes. Moreover, they are templated and support double-precision
floats, something not normally handled in SIMD.

4.5 Change to Matrix Operations in Shaders

Let M be a 4 x 4 matrix and let V be a 4 x 1 vector. The vector-on-the-right convention for multiplication
of the vector by the matrix is M'V. The vector-on-the-left convention is VI M, where the superscript T
denotes the transpose operator.

18

WDMA4 used the vector-on-the-right convention for its matrix and vector algebra. However, the shaders were
written to use the vector-on-the-left convention. For example, a Cg shader had code such as

void v_SomeShader

(
in float3 modelPosition : POSITION,
out float4 clipPosition : POSITION,
uniform float4x4 WVPMatrix
)
{
clipPosition = mul(float4(modelPosition, 1.0f), WVPMatrix);
}

Note that the name WVPMatrix is suggestive of the world matrix W applied first, the view matrix V applied
second, and the projection matrix P applied third.

The WM4 graphics system arranged for WWPMatrix to be in the proper form for the matrix multiplication.
This meant computing transposes of matrices to be sent to the shaders as constants, which is inefficient.
Moreover, the default shader compilation stores the matrices in row-major order, so the vector-on-the-left
convention causes some slight performance problems in the shader. Note that shader compilers sometimes
can be given command-line parameters to specify how the matrix should be stored, in which case the shader
performance problem can be avoided.

In WM5, we have switched to using vector-on-the-right convention for the shaders. This avoids the transpose
operations and shader performance when matrices are stored in row-major order. The vertex shader is then

void v_SomeShader

(
in float3 modelPosition : POSITION,
out float4 clipPosition : POSITION,
uniform float4x4 PVWMatrix
)
{
clipPosition = mul (PVWMatrix, float4(modelPosition, 1.0f));
+

Note that the naming convention for the shader constant has changed accordingly, still suggestive that W is
applied first, V' is applied second, and P is applied third.

4.6 Raw Data Formats for Buffers, Textures, and Effects

We added support for raw data formats for vertex and index buffers (WMVF), textures (WMTF) and
compiled shaders (WMFX). This allows users to create graphics resources with whatever tools they want
to use; that is, you are not forced to have a fully feature Wild Magic exporter for a modeling package (to
export Wild Magic scene objects).

19

4.6.1 Visual Objects

WMS5 has a class named Visual that replaces the Geometry class of WM4. A Visual object stores a geometry
type (points, segments, triangle meshes, triangle fans, triangles strips), a vertex buffer, a vertex format that
describes the vertex buffer, and an (optional) index buffer. A raw format that stores all this information is
listed next.

WMVF format
int type; <Visual::PrimitiveType>
VertexFormat vformat;
VertexBuffer vbuffer;
IndexBuffer ibuffer;

VertexFormat
int numAttributes;
Attribute attribute[numAttributes];
int stride;

Attribute
unsigned int streamlIndex;
unsigned int offset;
int type; <VertexFormat::AttributeType>
int usage; <VertexFormat::AttributeUsage>
unsigned int usageIndex;

VertexBuffer
int numElements;
int elementSize;
int usage; <Buffer::Usage>
char data[numElements*elementSize];

IndexBuffer
int numElements;
int elementSize;
int usage; <Buffer::Usage>
int offset;
char data[numElements*elementSize];

You can load such files with Visual: :LoadWMVF.

4.6.2 Texture Objects

WMS5 has a base class named Texture with various derived classes. The base class has all the data for the
textures. A raw format for the data is listed next.

WMTF format
int format; <Texture::Format>

20

int type; <Texture::Type>

int usage; <Buffer::Usage>

int numLevels;

int numDimensions;

int dimension[3] [MAX_MIPMAP_LEVELS]; <MAX_MIPMAP_LEVELS = 16>
int numLevelBytes[MAX_MIPMAP_LEVELS];

int numTotalBytes;

int levelOffsets[MAX_MIPMAP_LEVELS];

unsigned int userField[MAX_FIELDS]; <MAX_FIELDS = 8>

char data[numTotalBytes];

4.6.3 Effect Objects

WDMS5 has a class named VisualEffect that represents shaders from an FX system. The class encapsulates
techniques, passes, vertex and pixel shaders, global render state for the passes (and for combining passes),
shader constants, and information about inputs and outputs for the shaders. A raw format for this class is
listed next.

WMFX format
numTechniques <int>
Technique [numTechniques]

Technique
numPasses <int>
Pass [numPasses]

Pass
VertexShader
PixelShader
AlphaState
CullState
DepthState
OffsetState
StencilState
WireState

VertexShader
Shader

PixelShader
Shader

AlphaState
blendEnabled <int: bool>
srcBlend <int: SrcBlendMode>
dstBlend <int: DstBlendMode>
compareEnabled <int: bool>

21

compare <int: CompareMode>
reference <float>
constantColor[4] <float>

CullState
enabled <int: bool>
ccwOrder <int: bool>

DepthState
enabled <int: bool>
writable <int: bool>
compare <int: CompareMode>

OffsetState
fillEnabled <int: bool>
lineEnabled <int: bool>
pointEnabled <int: bool>
scale <float>
bias <float>

StencilState
enabled <int: bool>
compare <int: CompareMode>
reference <unsigned int>
mask <unsigned int>
writeMask <unsigned int>
onFail <int: OperationType>
onZFail <int: OperationType>
onZPass <int: OperationType>

WireState
enabled <int: bool>

Shader
programName <string>
numInputs <int>
numQutputs <int>
numConstants <int>
numSamplers <int>
numProfiles <int>
Input [numInputs]
Output [numOutputs]
Constant [numConstants]
Sampler [numSamplers]
Profile[numProfiles]

Input
name <string>

22

type <int: VariableType>
semantic <int: VariableSemantic>

Output
name <string>
type <int: VariableType>
semantic <int: VariableSemantic>

Constant
name <string>
numRegistersUsed <int>

Sampler
name <string>
type <int: SamplerType>
filter <int: SamplerFilter>
coordinate[3] <int: SamplerCoordinate>
lodBias <float>
anisotropy <float>
borderColor[4] <float>

Profile

type <int: VertexShader::Profile or PixelShader::Profile>
program <string>

baseRegisters [numConstants] <int>

textureUnits [numSamplers] <int>

You can load such files with VisualEffect: :LoadWMFX. An example of creating such files is in the WmfxCompiler
tool.

5 Tools

For now we have available only a limited set of tools. We will implement more over time. These run on
Microsoft Windows, but they may be easily ported to run on Linux and Macintosh.

5.1 BmpColorToGray

Convert a 24-bit color Microsoft Windows BMP file to a 24-bit gray-scale BMP file. I use this for generating
gray-scale images for books.

5.2 BmpToWmtf

Convert a 24-bit color Microsoft Windows BMP file to the Wild Magic 5 WMTF texture format. The
WMTTF files can be used on any platform.

23

5.3 GenerateProjects

The GenerateProjects tool allows you to automatically create Microsoft Visual Studio 2005, 2008, and
2010 project files and Xcode 3.2 compatible project files. From a command line,

GenerateProjects MyProject

will create MyProject_VC90.vcproj, MyProject_VC100.vcxproj, and MyProject_VC100.vcxproj.filters.
The project file uses paths relative to the WildMagic5 folder at the sample-application level. For example,
copy the generate file to

GeometricTools/WildMagic5/MyApplications/MyProject

The project has references to two files, MyProject.h and MyProject.cpp, which you will have to create.
However, you can always delete the references and use your own file names. NOTE: For Microsoft Visual
Studio 2010, the filters are stored in a separate file. This file is necessary to preserve the folders we use in
the project files to organize the source code.

The executable will also create a subfolder named MyProjectName.xcodeproj that contains a file named
project.pbxproj. This subfolder and file are the pair that Xcode needs on the Macintosh. The project
file uses paths relative to the WildMagic5h folder, just as described in the previous paragraph for Microsoft
Visual Studio.

5.4 ObjMtllmporter

Source code for importing of OBJ and MTL files (Alias Wavefront formats). Only basic features are sup-
ported.

5.5 WmfxCompiler

This program requires that NVIDIA’s Cg be installed. The program creates a command shell that runs
cge on a specified FX file. The compiler attempts several profiles, for DirectX 9 and for OpenGL. Any
successfully compiled profiles are then packaged up into a WMFX file that may be loaded by Wild Magic
5 and used as a VisualEffect object. In effect, WMFX files are the binary resources for the WM5 special
effect system.

5.6 WmtfViewer

This is a viewer program for Texture2D objects that are stored in the raw format WMTF files. It needs to
be modified to handle other texture types, but for now it is useful to be able to associate the program with
WMTF files, double-click, and view the texture. You can left-click-mouse on the texels to see the RGBA
values. You can also toggle between display of RGB and A.

24

6 Miscellaneous

Here are a few handy tricks for the Microsoft Windows platform and Microsoft Visual Studio.

6.1 User-Defined Syntax Coloring

The file Wm5CoreLIB.h has the following defines

#define public_internal public
#define protected_internal protected
#define private_internal private

We use these in classes to denote information that is intended to be internal to the engine, not for use by
application writers. We find it convenient to have these user-defined identifiers displayed in a color other
than black when editing in Microsoft Visual Studio.

To change the color, edit the following file
Program Files/Microsoft Visual Studio 10.0/Common7/IDE/usertype.dat
Add each identifier you want highlighted on a line by itself. Our file contains

public_internal
protected_internal
private_internal
new0

newl

new2

new3

newé

deletel

deletel

delete2

delete3

deleted
assertion

In Visual Studio, select the Tools menu. Select the Options ... item. A dialog is launched. In the
left window, expand the Environment item and select Fonts and Colors. In the right window, there
is a scrollable list named Display Items. Scroll down and select the User Keywords item. The Item
Foreground dialog control allows you to select a color. Wwe choose purple in MSVS 2005 and MSVS 2008.
However, MSVS 2010 broke this feature (the Service Pack 1 does not fix it)—all you can get is the color
blue.

25

6.2 Display of Debug Data

You can control how various data is displayed in a watch window in the debugger. The file that controls this
is

Program Files/Microsoft Visual Studio 10.0/Common7/Packages/Debugger/autoexp.dat

We added a section for Wild Magic 5 just before the [Visualizer] section.

; Wild Magic 5

Wm5: : Quaternion<*>=w=<mTuple[0],g>, x=<mTuple[1],g>, y=<mTuple[2],g>, z=<mTuple[3],g>
Wm5: : APoint=x=<mTuple[0],g>, y=<mTuple[1],g>, z=<mTuple[2],g>

Wmb: : AVector=x=<mTuple[0],g>, y=<mTuple[1],g>, z=<mTuple[2],g>

Wm5 : :HPoint=x=<mTuple[0],g>, y=<mTuplel[1],g>, z=<mTuple[2],g>, w=<mTuple[3],g>

Wm5: :HPlane=n0=<mTuple[0],g>, ni=<mTuple[1],g>, n2=<mTuple[2],g>, nc=<mTuple[3],g>
Wm5: :HQuaternion=w=<mTuple[0],g>, x=<mTuple[1],g>, y=<mTuple[2],g>, z=<mTuplel[3],g>

You can add other entries as you see fit.

Using Microsoft Windows 7 even as administrator, it was not possible to edit this file and save it directly.
Behind the scenes, Windows 7 seems to save a copy of the file (the version you edited), but on loading, Visual
Studio gets the old copy. We copied autoexp.dat to a temporary folder owned by the user who was logged
in, edited the file, and then copied it to the location within the program-files directory. A dialog appeared
that indicated you could save, but only if you are an administrator. Clicking on the save did work.

6.3 Changing the Icon for a File Type in Microsoft Windows 7

Previous versions of Windows allowed you to change the icon associated with a file type by going through
an option in Windows Explorer. This option was removed in Windows 7. The solution presented here shows
you how painful it can be to do something as simple as changing the icon.

We did this to associate WMTF files with the WmtfViewer tool. We have this tool stored as

GeometricTools/WildMagic5/Bin/WmtfViewer.exe

1. Initially, the default icon is associated with WMTTF files. Double-click on a WMTF file. A dialog is
launched indicating that Windows cannot open the file. Click the “Select a program from a list of
installed programs” radio button and press the OK button.

2. Make sure the box is checked for “Always use the selected program to open this kind of file”. Press
the Browse ... button and navigate to where you have the application located (in our case, the Bin
folder). Select the application and finish the dialog.

3. For our WMTTF file extension, Windows created a registry entry called

HKEY_CLASSES_ROOT\wmtf_auto_file

From a command prompt, run regedit and navigate to this registry entry.

26

. Add a new registry key called “DefaultIlcon”. In the right pane, double-click on the Name field (its
name is Default in parentheses). A dialog is launched with a Value data edit control. Add to it
C:\Windows\System32\Shel132.d11,number, where you have to use a path to the System32 folder on
your machine (maybe you installed Windows in a different location).

. Well, do not type in the word number. You actually need a number. What is this number? In Windows
Explorer, go to a folder and right-click on it. In the pop-up menu, select Properties, and then select
the Customize tab. Select the Change Icon ... button.

. A dialog appears with four rows of icons. The default icon is in the first row, first column. This icon
has number 0. The icon below it has number 1, and so on. The first row, second column, has number
4, and the icon below it has number 5, and so on. Find the icon you want to use, determine its number,
and put that in the value data of the registry key.

. You can also provide an ICO file instead of the Shell32 DLL.

. Exit the registry. You must reboot your machine before the change takes effect.

27

	1 Introduction
	1.1 License
	1.2 Copying the Distribution to Your Machine
	1.3 Environment Variables
	1.3.1 Microsoft Windows 7
	1.3.2 Macintosh
	1.3.3 Linux

	2 Prerequisites for Compiling and Using Wild Magic
	2.1 Microsoft Visual Studio 2005 (VC80), 2008 (VC90), or 2010 (VC100)
	2.2 Apple Xcode 4.1 and Mac OS X 10.7 [Lion]
	2.3 Microsoft DirectX
	2.4 OpenGL and Extension Wrappers
	2.5 NVIDIA's Cg Toolkit

	3 Compiling the Distribution
	3.1 Automatic Builds with Microsoft Visual Studio
	3.2 Automatic Builds on Macintosh
	3.3 Automatic Builds on Linux
	3.4 Compiler Support for Windows Dynamic Link Libraries
	3.5 Finding Windows Dynamic Link Libraries at Run-Time

	4 Release Notes: Differences from Wild Magic 4
	4.1 Preprocessor Defines Specified in Header Files
	4.2 Reduced Number of Build Configurations
	4.3 Memory Management
	4.4 New Classes for Affine Algebra
	4.5 Change to Matrix Operations in Shaders
	4.6 Raw Data Formats for Buffers, Textures, and Effects
	4.6.1 Visual Objects
	4.6.2 Texture Objects
	4.6.3 Effect Objects

	5 Tools
	5.1 BmpColorToGray
	5.2 BmpToWmtf
	5.3 GenerateProjects
	5.4 ObjMtlImporter
	5.5 WmfxCompiler
	5.6 WmtfViewer

	6 Miscellaneous
	6.1 User-Defined Syntax Coloring
	6.2 Display of Debug Data
	6.3 Changing the Icon for a File Type in Microsoft Windows 7

